474
Views
1
CrossRef citations to date
0
Altmetric
Review Article

The FGF/FGFR signalling mediated anti-cancer drug resistance and therapeutic intervention

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 13509-13533 | Received 16 Nov 2022, Accepted 26 Jan 2023, Published online: 30 Mar 2023

References

  • Abou-Alfa, G. K., Sahai, V., Hollebecque, A., Vaccaro, G., Melisi, D., Al-Rajabi, R., Paulson, A. S., Borad, M. J., Gallinson, D., Murphy, A. G., Oh, D.-Y., Dotan, E., Catenacci, D. V., Van Cutsem, E., Ji, T., Lihou, C. F., Zhen, H., Féliz, L., & Vogel, A. (2020). Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. The Lancet. Oncology, 21(5), 671–684. https://doi.org/10.1016/S1470-2045(20)30109-1
  • Addeo, A., Joerger, M., Rothschild, S., Eboulet, E. I., Godar, G., Waibel-Pachinger, C., Haefliger, S., Mark, M. T., Fernandez, E., Mach, N., Mauti, L. A., & Frueh, M. (2021). Fibroblast growth factor receptor (FGFR) inhibitor rogaratinib in patients with advanced pretreated squamous-cell non-small cell lung cancer over-expressing FGFR mRNA: The SAKK 19/18 phase II study. Journal of Clinical Oncology, 39(15_suppl), e21119. https://doi.org/10.1200/JCO.2021.39.15_suppl.e21119
  • Agarwal, D., Pineda, S., Michailidou, K., Herranz, J., Pita, G., Moreno, L. T., Alonso, M. R., Dennis, J., Wang, Q., Bolla, M. K., Meyer, K. B., Menéndez-Rodríguez, P., Hardisson, D., Mendiola, M., González-Neira, A., Lindblom, A., Margolin, S., Swerdlow, A., Ashworth, A., … Milne, R. L. (2014). FGF receptor genes and breast cancer susceptibility: Results from the Breast Cancer Association Consortium. British Journal of Cancer, 110(4), 1088–1100. https://doi.org/10.1038/bjc.2013.769
  • Akl, M. R., Nagpal, P., Ayoub, N. M., Tai, B., Prabhu, S. A., Capac, C. M., Gliksman, M., Goy, A., & Suh, K. S. (2016). Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget, 7(28), 44735–44762. https://doi.org/10.18632/oncotarget.8203
  • Angevin, E., Lopez-Martin, J. A., Lin, C.-C., Gschwend, J. E., Harzstark, A., Castellano, D., Soria, J.-C., Sen, P., Chang, J., Shi, M., Kay, A., & Escudier, B. (2013). Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clinical Cancer Research, 19(5), 1257–1268. https://doi.org/10.1158/1078-0432.CCR-12-2885
  • Arumugam, T., Ramachandran, V., Fournier, K. F., Wang, H., Marquis, L., Abbruzzese, J. L., Gallick, G. E., Logsdon, C. D., McConkey, D. J., & Choi, W. (2009). Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Research, 69(14), 5820–5828. https://doi.org/10.1158/0008-5472.CAN-08-2819
  • Azuma, K., Kawahara, A., Sonoda, K., Nakashima, K., Tashiro, K., Watari, K., Izumi, H., Kage, M., Kuwano, M., Ono, M., & Hoshino, T. (2014). FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget, 5(15), 5908–5919.
  • Babina, I. S., & Turner, N. C. (2017). Advances and challenges in targeting FGFR signalling in cancer. Nature Reviews Cancer, 17(5), 5. https://doi.org/10.1038/nrc.2017.8
  • Belch, J., Hiatt, W. R., Baumgartner, I., Driver, I. V., Nikol, S., Norgren, L., & Van Belle, E., TAMARIS Committees and Investigators. (2011). Effect of fibroblast growth factor NV1FGF on amputation and death: A randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet (London, England), 377(9781), 1929–1937. https://doi.org/10.1016/S0140-6736(11)60394-2
  • Bendell, J., Rogers, S., Xiang, H., Pierce, K., Krishnan, K., Sikorski, R., Hambleton, J., & Rasco, D. (2016). FPA144-001: A first in human study of FPA 144, an ADCC-enhanced, FGFR2b isoform-selective monoclonal antibody in patients with advanced solid tumors. Journal of Clinical Oncology, 34, 140–140. https://doi.org/10.1200/jco.2016.34.4_suppl.140
  • Binju, M., Amaya-Padilla, M. A., Wan, G., Gunosewoyo, H., Suryo Rahmanto, Y., & Yu, Y. (2019). Therapeutic inducers of apoptosis in ovarian cancer. Cancers, 11(11), E1786. https://doi.org/10.3390/cancers11111786
  • Blackwell, C., Sherk, C., Fricko, M., Ganji, G., Barnette, M., Hoang, B., Tunstead, J., Skedzielewski, T., Alsaid, H., Jucker, B. M., Minthorn, E., Kumar, R., & DeYoung, M. P. (2016). Inhibition of FGF/FGFR autocrine signaling in mesothelioma with the FGF ligand trap, FP-1039/GSK3052230. Oncotarget, 7(26), 39861–39871. https://doi.org/10.18632/oncotarget.9515
  • Bohrer, L. R., Chuntova, P., Bade, L. K., Beadnell, T. C., Leon, R. P., Brady, N. J., Ryu, Y., Goldberg, J. E., Schmechel, S. C., Koopmeiners, J. S., McCarthy, J. B., & Schwertfeger, K. L. (2014). Activation of the FGFR-STAT3 pathway in breast cancer cells induces a hyaluronan-rich microenvironment that licenses tumor formation. Cancer Research, 74(1), 374–386. https://doi.org/10.1158/0008-5472.CAN-13-2469
  • Brameld, K. A., Owens, T. D., Verner, E., Venetsanakos, E., Bradshaw, J. M., Phan, V. T., Tam, D., Leung, K., Shu, J., LaStant, J., Loughhead, D. G., Ton, T., Karr, D. E., Gerritsen, M. E., Goldstein, D. M., & Funk, J. O. (2017). Discovery of the Irreversible Covalent FGFR Inhibitor 8-(3-(4-Acryloylpiperazin-1-yl)propyl)-6-(2,6-dichloro-3,5-dimethoxyphenyl)-2-(methylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (PRN1371) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry, 60(15), 6516–6527. https://doi.org/10.1021/acs.jmedchem.7b00360
  • Brooks, A. N., Kilgour, E., & Smith, P. D. (2012). Molecular pathways: Fibroblast growth factor signaling: A new therapeutic opportunity in cancer. Clinical Cancer Research, 18(7), 1855–1862. https://doi.org/10.1158/1078-0432.CCR-11-0699
  • Brown, W. S., Akhand, S. S., & Wendt, M. K. (2016a). FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition. Oncotarget, 7(50), 83424–83436. https://doi.org/10.18632/oncotarget.13117
  • Brown, W. S., Tan, L., Smith, A., Gray, N. S., & Wendt, M. K. (2016b). Covalent targeting of fibroblast growth factor receptor inhibits metastatic breast cancer. Molecular Cancer Therapeutics, 15(9), 2096–2106. https://doi.org/10.1158/1535-7163.MCT-16-0136
  • Bunney, T. D., Wan, S., Thiyagarajan, N., Sutto, L., Williams, S. V., Ashford, P., Koss, H., Knowles, M. A., Gervasio, F. L., Coveney, P. V., & Katan, M. (2015). The effect of mutations on drug sensitivity and kinase activity of fibroblast growth factor receptors: A combined experimental and theoretical study. EBioMedicine, 2(3), 194–204. https://doi.org/10.1016/j.ebiom.2015.02.009
  • Byron, S. A., Chen, H., Wortmann, A., Loch, D., Gartside, M. G., Dehkhoda, F., Blais, S. P., Neubert, T. A., Mohammadi, M., & Pollock, P. M. (2013). The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib, and ponatinib ATP-competitive inhibitors. Neoplasia (New York, N.Y.), 15(8), 975–988.
  • Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8(4), 299–309. https://doi.org/10.1016/j.ccr.2005.09.005
  • Chae, Y. K., Ranganath, K., Hammerman, P. S., Vaklavas, C., Mohindra, N., Kalyan, A., Matsangou, M., Costa, R., Carneiro, B., Villaflor, V. M., Cristofanilli, M., & Giles, F. J. (2016). Inhibition of the fibroblast growth factor receptor (FGFR) pathway: The current landscape and barriers to clinical application. Oncotarget, 8(9), 16052–16074. https://doi.org/10.18632/oncotarget.14109
  • Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science (New York, N.Y.), 331(6024), 1559–1564. https://doi.org/10.1126/science.1203543
  • Chan, S. L., Schuler, M., Kang, Y.-K., Yen, C.-J., Edeline, J., Choo, S. P., Lin, C.-C., Okusaka, T., Weiss, K.-H., Macarulla, T., Cattan, S., Blanc, J.-F., Lee, K.-H., Maur, M., Pant, S., Kudo, M., Assenat, E., Zhu, A. X., Yau, T., … Delord, J.-P. (2022). A first-in-human phase 1/2 study of FGF401 and combination of FGF401 with spartalizumab in patients with hepatocellular carcinoma or biomarker-selected solid tumors. Journal of Experimental & Clinical Cancer Research: CR, 41(1), 189. https://doi.org/10.1186/s13046-022-02383-5
  • Chapuy, B., Panse, M., Radunski, U., Koch, R., Wenzel, D., Inagaki, N., Haase, D., Truemper, L., & Wulf, G. G. (2009). ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica, 94(11), 1528–1536. https://doi.org/10.3324/haematol.2009.008631
  • Chell, V., Balmanno, K., Little, A. S., Wilson, M., Andrews, S., Blockley, L., Hampson, M., Gavine, P. R., & Cook, S. J. (2013). Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene, 32(25), 3059–3070. https://doi.org/10.1038/onc.2012.319
  • Chen, J., Ge, X., Zhang, W., Ding, P., Du, Y., Wang, Q., Li, L., Fang, L., Sun, Y., Zhang, P., Zhou, Y., Zhang, L., Lv, X., Li, L., Zhang, X., Zhang, Q., Xue, K., Gu, H., Lei, Q., … Hu, W. (2020). PI3K/AKT inhibition reverses R-CHOP resistance by destabilizing SOX2 in diffuse large B cell lymphoma. Theranostics, 10(7), 3151–3163. https://doi.org/10.7150/thno.41362
  • Chen, L., Qi, H., Zhang, L., Li, H., Shao, J., Chen, H., Zhong, M., Shi, X., Ye, T., & Li, Q. (2018). Effects of FGFR gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-docetaxel-based chemotherapy in breast cancer patients. BMC Cancer, 18(1), 1038. https://doi.org/10.1186/s12885-018-4951-z
  • Chen, M., Wei, H., Cao, J., Liu, R., Wang, Y., & Zheng, C. (2007). Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. Journal of Biochemistry and Molecular Biology, 40(3), 396–403. https://doi.org/10.5483/bmbrep.2007.40.3.396
  • Chioni, A.-M., & Grose, R. P. (2021). Biological significance and targeting of the FGFR axis in cancer. Cancers, 13(22), 5681. https://doi.org/10.3390/cancers13225681
  • Coleman, S. J., Chioni, A.-M., Ghallab, M., Anderson, R. K., Lemoine, N. R., Kocher, H. M., & Grose, R. P. (2014). Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Molecular Medicine, 6(4), 467–481. https://doi.org/10.1002/emmm.201302698
  • Collin, M.-P., Lobell, M., Hübsch, W., Brohm, D., Schirok, H., Jautelat, R., Lustig, K., Bömer, U., Vöhringer, V., Héroult, M., Grünewald, S., & Hess-Stumpp, H. (2018). Discovery of rogaratinib (BAY 1163877): A pan-FGFR inhibitor. ChemMedChem. 13(5), 437–445. https://doi.org/10.1002/cmdc.201700718
  • Cortes, J. E., Kim, D.-W., Pinilla-Ibarz, J., Le Coutre, P. D., Paquette, R., Chuah, C., Nicolini, F. E., Apperley, J. F., Khoury, H. J., Talpaz, M., DeAngelo, D. J., Abruzzese, E., Rea, D., Baccarani, M., Müller, M. C., Gambacorti-Passerini, C., Lustgarten, S., Rivera, V. M., Haluska, F. G., … Kantarjian, H. M. (2018). Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: Final 5-year results of the phase 2 PACE trial. Blood, 132(4), 393–404. https://doi.org/10.1182/blood-2016-09-739086
  • Cowell, J. K., Qin, H., Hu, T., Wu, Q., Bhole, A., & Ren, M. (2017). Mutation in the FGFR1 tyrosine kinase domain or inactivation of PTEN is associated with acquired resistance to FGFR inhibitors in FGFR1-driven leukemia/lymphomas. International Journal of Cancer, 141(9), 1822–1829. https://doi.org/10.1002/ijc.30848
  • Da Silva, C. G., Peters, G. J., Ossendorp, F., & Cruz, L. J. (2017). The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemotherapy and Pharmacology, 80(5), 881–894. https://doi.org/10.1007/s00280-017-3427-1
  • Dai, S., Zhou, Z., Chen, Z., Xu, G., & Chen, Y. (2019). Fibroblast growth factor receptors (FGFRs): Structures and small molecule inhibitors. Cells, 8(6), E614. https://doi.org/10.3390/cells8060614
  • Datta, J., Damodaran, S., Parks, H., Ocrainiciuc, C., Miya, J., Yu, L., Gardner, E. P., Samorodnitsky, E., Wing, M. R., Bhatt, D., Hays, J., Reeser, J. W., & Roychowdhury, S. (2017). Akt activation mediates acquired resistance to fibroblast growth factor receptor inhibitor BGJ398. Molecular Cancer Therapeutics, 16(4), 614–624. https://doi.org/10.1158/1535-7163.MCT-15-1010
  • de Klerk, D. J., Honeywell, R. J., Jansen, G., & Peters, G. J. (2018). Transporter and lysosomal mediated (multi)drug resistance to tyrosine kinase inhibitors and potential strategies to overcome resistance. Cancers, 10(12), 503. https://doi.org/10.3390/cancers10120503
  • De Luca, A., Esposito Abate, R., Rachiglio, A. M., Maiello, M. R., Esposito, C., Schettino, C., Izzo, F., Nasti, G., & Normanno, N. (2020). FGFR fusions in cancer: From diagnostic approaches to therapeutic intervention. International Journal of Molecular Sciences, 21(18), 6856. https://doi.org/10.3390/ijms21186856
  • Degirolamo, C., Sabbà, C., & Moschetta, A. (2016). Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nature Reviews. Drug Discovery, 15(1), 51–69. https://doi.org/10.1038/nrd.2015.9
  • Drago, J. Z., Formisano, L., Juric, D., Niemierko, A., Servetto, A., Wander, S. A., Spring, L. M., Vidula, N., Younger, J., Peppercorn, J., Yuen, M., Malvarosa, G., Sgroi, D., Isakoff, S. J., Moy, B., Ellisen, L. W., Iafrate, A. J., Arteaga, C. L., & Bardia, A. (2019). fgfr1 amplification mediates endocrine resistance but retains TORC sensitivity in metastatic hormone receptor-positive (HR+) breast cancer. Clinical Cancer Research, 25(21), 6443–6451. https://doi.org/10.1158/1078-0432.CCR-19-0138
  • Droz Dit Busset, M., Shaib, W. L., Harris, W. P., Damjanov, N., Borad, M., Vogel, A., Bridgewater, J. A., Sellmann, L., Dadduzio, V., Borner, M., Snider, J., Cantero, F., Saulay, M., Braun, S., Mazzaferro, V., & Javle, M. (2020). 45P Efficacy of derazantinib in intrahepatic cholangiocarcinoma patients with FGFR2 mutations or amplifications: Pooled analysis of clinical trials and early access programs. Annals of Oncology, 31, S1231. https://doi.org/10.1016/j.annonc.2020.08.2204
  • Dutt, A., Salvesen, H. B., Chen, T.-H., Ramos, A. H., Onofrio, R. C., Hatton, C., Nicoletti, R., Winckler, W., Grewal, R., Hanna, M., Wyhs, N., Ziaugra, L., Richter, D. J., Trovik, J., Engelsen, I. B., Stefansson, I. M., Fennell, T., Cibulskis, K., Zody, M. C., … Greulich, H. (2008). Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(25), 8713–8717. https://doi.org/10.1073/pnas.0803379105
  • El Agha, E., Kosanovic, D., Schermuly, R. T., & Bellusci, S. (2016). Role of fibroblast growth factors in organ regeneration and repair. Seminars in Cell & Developmental Biology, 53, 76–84. https://doi.org/10.1016/j.semcdb.2015.10.009
  • Englinger, B., Kallus, S., Senkiv, J., Laemmerer, A., Moser, P., Gabler, L., Groza, D., Kowol, C. R., Heffeter, P., Grusch, M., & Berger, W. (2018). Lysosomal sequestration impairs the activity of the preclinical FGFR inhibitor PD173074. Cells, 7(12), 259. https://doi.org/10.3390/cells7120259
  • Farrell, B., & Breeze, A. L. (2018). Structure, activation and dysregulation of fibroblast growth factor receptor kinases: Perspectives for clinical targeting. Biochemical Society Transactions, 46(6), 1753–1770. https://doi.org/10.1042/BST20180004
  • Fearon, A. E., Carter, E. P., Clayton, N. S., Wilkes, E. H., Baker, A.-M., Kapitonova, E., Bakhouche, B. A., Tanner, Y., Wang, J., Gadaleta, E., Chelala, C., Moore, K. M., Marshall, J. F., Chupin, J., Schmid, P., Jones, J. L., Lockley, M., Cutillas, P. R., & Grose, R. P. (2018). PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Reports, 22(9), 2469–2481. https://doi.org/10.1016/j.celrep.2018.02.028
  • Ferguson, H. R., Smith, M. P., & Francavilla, C. (2021). Fibroblast growth factor receptors (FGFRs) and noncanonical partners in cancer signaling. Cells, 10(5), 1201. https://doi.org/10.3390/cells10051201
  • Fischbach, A., Rogler, A., Erber, R., Stoehr, R., Poulsom, R., Heidenreich, A., Schneevoigt, B.-S., Hauke, S., Hartmann, A., Knuechel, R., Veeck, J., & Gaisa, N. T. (2015). Fibroblast growth factor receptor (FGFR) gene amplifications are rare events in bladder cancer. Histopathology, 66(5), 639–649. https://doi.org/10.1111/his.12473
  • Formisano, L., Stauffer, K. M., Young, C. D., Bhola, N. E., Guerrero-Zotano, A. L., Jansen, V. M., Estrada, M. M., Hutchinson, K. E., Giltnane, J. M., Schwarz, L. J., Lu, Y., Balko, J. M., Deas, O., Cairo, S., Judde, J.-G., Mayer, I. A., Sanders, M., Dugger, T. C., Bianco, R., … Arteaga, C. L. (2017). Association of FGFR1 with ERα maintains ligand-independent ER transcription and mediates resistance to estrogen deprivation in ER + breast cancer. Clinical Cancer Research, 23(20), 6138–6150. https://doi.org/10.1158/1078-0432.CCR-17-1232
  • French, D. M., Lin, B. C., Wang, M., Adams, C., Shek, T., Hötzel, K., Bolon, B., Ferrando, R., Blackmore, C., Schroeder, K., Rodriguez, L. A., Hristopoulos, M., Venook, R., Ashkenazi, A., & Desnoyers, L. R. (2012). Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One. 7(5), e36713. https://doi.org/10.1371/journal.pone.0036713
  • Fumarola, C., Bozza, N., Castelli, R., Ferlenghi, F., Marseglia, G., Lodola, A., Bonelli, M., La Monica, S., Cretella, D., Alfieri, R., Minari, R., Galetti, M., Tiseo, M., Ardizzoni, A., Mor, M., & Petronini, P. G. (2019). Expanding the arsenal of FGFR inhibitors: A novel chloroacetamide derivative as a new irreversible agent with anti-proliferative activity against FGFR1-amplified lung cancer cell lines. Frontiers in Oncology, 9, 179. https://doi.org/10.3389/fonc.2019.00179
  • Furdui, C. M., Lew, E. D., Schlessinger, J., & Anderson, K. S. (2006). Autophosphorylation of FGFR1 Kinase Is Mediated by a Sequential and Precisely Ordered Reaction. Molecular Cell, 21(5), 711–717. https://doi.org/10.1016/j.molcel.2006.01.022
  • Gallo, L. H., Nelson, K. N., Meyer, A. N., & Donoghue, D. J. (2015). Functions of fibroblast growth factor receptors in cancer defined by novel translocations and mutations. Cytokine & Growth Factor Reviews, 26(4), 425–449. https://doi.org/10.1016/j.cytogfr.2015.03.003
  • Go, R. S., Lee, S. J., Shin, D., Callister, S. M., Jobe, D. A., Conry, R. M., Tarhini, A. A., & Kirkwood, J. M. (2013). ECOG phase II trial of graded-dose peginterferon α-2b in patients with metastatic melanoma over-expressing basic fibroblast growth factor (E2602). Clinical Cancer Research , 19(23), 6597–6604. https://doi.org/10.1158/1078-0432.CCR-13-1414
  • Goyal, L., Saha, S. K., Liu, L. Y., Siravegna, G., Leshchiner, I., Ahronian, L. G., Lennerz, J. K., Vu, P., Deshpande, V., Kambadakone, A., Mussolin, B., Reyes, S., Henderson, L., Sun, J. E., Van Seventer, E. E., Gurski, J. M., Baltschukat, S., Schacher-Engstler, B., Barys, L., … Zhu, A. X. (2017). Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discovery, 7(3), 252–263. https://doi.org/10.1158/2159-8290.CD-16-1000
  • Goyal, L., Shi, L., Liu, L. Y., Fece de la Cruz, F., Lennerz, J. K., Raghavan, S., Leschiner, I., Elagina, L., Siravegna, G., Ng, R. W. S., Vu, P., Patra, K. C., Saha, S. K., Uppot, R. N., Arellano, R., Reyes, S., Sagara, T., Otsuki, S., Nadres, B., … Bardeesy, N. (2019). TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion–positive intrahepatic cholangiocarcinoma. Cancer Discovery, 9(8), 1064–1079. https://doi.org/10.1158/2159-8290.CD-19-0182
  • Gozgit, J. M., Squillace, R. M., Wongchenko, M. J., Miller, D., Wardwell, S., Mohemmad, Q., Narasimhan, N. I., Wang, F., Clackson, T., & Rivera, V. M. (2013). Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer Chemotherapy and Pharmacology, 71(5), 1315–1323. https://doi.org/10.1007/s00280-013-2131-z
  • Grivas, P., Kiedrowski, L., Sonpavde, G., Gupta, S., Thomas, R., Gourdin, T., Hardin, A., Hamann, K., Faltas, B., & Vogelzang, N. (2021). Spectrum of FGFR2/3 alterations in cell-free DNA of patients with advanced urothelial carcinoma. Bladder Cancer, 7, 1–6. https://doi.org/10.3233/BLC-201517
  • Guimarães, C. R. W., Rai, B. K., Munchhof, M. J., Liu, S., Wang, J., Bhattacharya, S. K., & Buckbinder, L. (2011). Understanding the impact of the P-loop conformation on kinase selectivity. Journal of Chemical Information and Modeling, 51(6), 1199–1204. https://doi.org/10.1021/ci200153c
  • Hagel, M., Miduturu, C., Sheets, M., Rubin, N., Weng, W., Stransky, N., Bifulco, N., Kim, J. L., Hodous, B., Brooijmans, N., Shutes, A., Winter, C., Lengauer, C., Kohl, N. E., & Guzi, T. (2015). First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discovery, 5(4), 424–437. https://doi.org/10.1158/2159-8290.CD-14-1029
  • Harding, T. C., Long, L., Palencia, S., Zhang, H., Sadra, A., Hestir, K., Patil, N., Levin, A., Hsu, A. W., Charych, D., Brennan, T., Zanghi, J., Halenbeck, R., Marshall, S. A., Qin, M., Doberstein, S. K., Hollenbaugh, D., Kavanaugh, W. M., Williams, L. T., & Baker, K. P. (2013). Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Science Translational Medicine, 5(178), 178ra39. https://doi.org/10.1126/scitranslmed.3005414
  • Hari, S. B., Merritt, E. A., & Maly, D. J. (2013). Sequence determinants of a specific inactive protein kinase conformation. Chemistry & Biology, 20(6), 806–815. https://doi.org/10.1016/j.chembiol.2013.05.005
  • Hatlen, M. A., Schmidt-Kittler, O., Sherwin, C. A., Rozsahegyi, E., Rubin, N., Sheets, M. P., Kim, J. L., Miduturu, C., Bifulco, N., Brooijmans, N., Shi, H., Guzi, T., Boral, A., Lengauer, C., Dorsch, M., Kim, R. D., Kang, Y.-K., Wolf, B. B., & Hoeflich, K. P. (2019). Acquired on-target clinical resistance validates FGFR4 as a driver of hepatocellular carcinoma. Cancer Discovery, 9(12), 1686–1695. https://doi.org/10.1158/2159-8290.CD-19-0367
  • Hayashi, T., Desmeules, P., Smith, R. S., Drilon, A., Somwar, R., & Ladanyi, M. (2018). RASA1 and NF1 are preferentially co-mutated and define a distinct genetic subset of smoking-associated non-small cell lung carcinomas sensitive to MEK inhibition. Clinical Cancer Research, 24(6), 1436–1447. https://doi.org/10.1158/1078-0432.CCR-17-2343
  • Helsten, T., Elkin, S., Arthur, E., Tomson, B. N., Carter, J., & Kurzrock, R. (2016). The FGFR landscape in cancer: Analysis of 4,853 tumors by next-generation sequencing. Clinical Cancer Research, 22(1), 259–267. https://doi.org/10.1158/1078-0432.CCR-14-3212
  • Herbert, S. P., & Stainier, D. Y. R. (2011). Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nature Reviews. Molecular Cell Biology, 12(9), 551–564. https://doi.org/10.1038/nrm3176
  • Hu, Y., Qiu, Y., Yagüe, E., Ji, W., Liu, J., & Zhang, J. (2016). MiRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer. Cell Death & Disease, 7(6), e2291. https://doi.org/10.1038/cddis.2016.194
  • Huang, Z., Tan, L., Wang, H., Liu, Y., Blais, S., Deng, J., Neubert, T. A., Gray, N. S., Li, X., & Mohammadi, M. (2015). DFG-out mode of inhibition by an irreversible type-1 inhibitor capable of overcoming gate-keeper mutations in FGF receptors. ACS Chemical Biology, 10(1), 299–309. https://doi.org/10.1021/cb500674s
  • Huijts, P. E. A., van Dongen, M., de Goeij, M. C. M., van Moolenbroek, A. J., Blanken, F., Vreeswijk, M. P. G., de Kruijf, E. M., Mesker, W. E., van Zwet, E. W., Tollenaar, R. A. E. M., Smit, V. T. H. B. M., van Asperen, C. J., & Devilee, P. (2011). Allele-specific regulation of FGFR2 expression is cell type-dependent and may increase breast cancer risk through a paracrine stimulus involving FGF10. Breast Cancer Research: BCR, 13(4), R72. https://doi.org/10.1186/bcr2917
  • Hunter, D. J., Kraft, P., Jacobs, K. B., Cox, D. G., Yeager, M., Hankinson, S. E., Wacholder, S., Wang, Z., Welch, R., Hutchinson, A., Wang, J., Yu, K., Chatterjee, N., Orr, N., Willett, W. C., Colditz, G. A., Ziegler, R. G., Berg, C. D., Buys, S. S., … Chanock, S. J. (2007). A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genetics, 39(7), 870–874. https://doi.org/10.1038/ng2075
  • Hur, J. Y., Chao, J., Kim, K., Kim, S. T., Kim, K.-M., Klempner, S. J., & Lee, J. (2020). High-level FGFR2 amplification is associated with poor prognosis and Lower response to chemotherapy in gastric cancers. Pathology, Research and Practice, 216(4), 152878. https://doi.org/10.1016/j.prp.2020.152878
  • Hyman, D. M., Goyal, L., Grivas, P., Meric-Bernstam, F., Tabernero, J., Hu, Y., Kirpicheva, Y., Nicolas-Metral, V., Pokorska-Bocci, A., Vaslin, A., Zanna, C., & Flaherty, K. (2019). FUZE clinical trial: A phase 2 study of Debio 1347 in FGFR fusion-positive advanced solid tumors irrespectively of tumor histology. Journal of Clinical Oncology, 37(15_suppl), TPS3157–TPS3157. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS3157
  • Ichikawa, K., Watanabe Miyano, S., Minoshima, Y., Matsui, J., & Funahashi, Y. (2020). Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Scientific Reports, 10(1), 2939. https://doi.org/10.1038/s41598-020-59853-z
  • Jakobsen, K. R., Demuth, C., Madsen, A. T., Hussmann, D., Vad-Nielsen, J., Nielsen, A. L., & Sorensen, B. S. (2017). MET amplification and epithelial-to-mesenchymal transition exist as parallel resistance mechanisms in erlotinib-resistant, EGFR-mutated, NSCLC HCC827 cells. Oncogenesis, 6(4), e307. https://doi.org/10.1038/oncsis.2017.17
  • Javle, M., Lowery, M., Shroff, R. T., Weiss, K. H., Springfeld, C., Borad, M. J., Ramanathan, R. K., Goyal, L., Sadeghi, S., Macarulla, T., El-Khoueiry, A., Kelley, R. K., Borbath, I., Choo, S. P., Oh, D.-Y., Philip, P. A., Chen, L.-T., Reungwetwattana, T., Van Cutsem, E., … Bekaii-Saab, T. (2018). Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. Journal of Clinical Oncology, 36(3), 276–282. https://doi.org/10.1200/JCO.2017.75.5009
  • Jendryczko, K., Chudzian, J., Skinder, N., Opaliński, Ł., Rzeszótko, J., Wiedlocha, A., Otlewski, J., & Szlachcic, A. (2020). FGF2-derived peptibodyF2-MMAE conjugate for targeted delivery of cytotoxic drugs into cancer cells overexpressing FGFR1. Cancers, 12(10), 2992. https://doi.org/10.3390/cancers12102992
  • Jiang, Y., Sun, S., Wei, W., Ren, Y., Liu, J., & Pang, D. (2015). Association of FGFR3 and FGFR4 gene polymorphisms with breast cancer in Chinese women of Heilongjiang province. Oncotarget, 6(32), 34023–34029.
  • Jonniya, N. A., & Kar, P. (2020). Investigating specificity of the anti-hypertensive inhibitor WNK463 against with-no-lysine kinase family isoforms via multiscale simulations. Journal of Biomolecular Structure & Dynamics, 38(5), 1306–1321. https://doi.org/10.1080/07391102.2019.1602079
  • Kalinina, J., Dutta, K., Ilghari, D., Beenken, A., Goetz, R., Eliseenkova, A. V., Cowburn, D., & Mohammadi, M. (2012). The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure (London, England: 1993), 20(1), 77–88. https://doi.org/10.1016/j.str.2011.10.022
  • Kas, S. M., de Ruiter, J. R., Schipper, K., Schut, E., Bombardelli, L., Wientjens, E., Drenth, A. P., de Korte-Grimmerink, R., Mahakena, S., Phillips, C., Smith, P. D., Klarenbeek, S., van de Wetering, K., Berns, A., Wessels, L. F. A., & Jonkers, J. (2018). Transcriptomics and transposon mutagenesis identify multiple mechanisms of resistance to the FGFR inhibitor AZD4547. Cancer Research, 78(19), 5668–5679. https://doi.org/10.1158/0008-5472.CAN-18-0757
  • Katoh, M. (2016). FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). International Journal of Molecular Medicine, 38(1), 3–15. https://doi.org/10.3892/ijmm.2016.2620
  • Katoh, M. (2019). Fibroblast growth factor receptors as treatment targets in clinical oncology. Nature Reviews. Clinical Oncology, 16(2), 105–122. https://doi.org/10.1038/s41571-018-0115-y
  • Kazmi, F., Hensley, T., Pope, C., Funk, R. S., Loewen, G. J., Buckley, D. B., & Parkinson, A. (2013). Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metabolism and Disposition, 41(4), 897–905. https://doi.org/10.1124/dmd.112.050054
  • Kikuchi, A., Suzuki, T., Nakazawa, T., Iizuka, M., Nakayama, A., Ozawa, T., Kameda, M., Shindoh, N., Terasaka, T., Hirano, M., & Kuromitsu, S. (2017). ASP5878, a selective FGFR inhibitor, to treat FGFR3-dependent urothelial cancer with or without chemoresistance. Cancer Science, 108(2), 236–242. https://doi.org/10.1111/cas.13124
  • Kim, R. D., Sarker, D., Meyer, T., Yau, T., Macarulla, T., Park, J.-W., Choo, S. P., Hollebecque, A., Sung, M. W., Lim, H.-Y., Mazzaferro, V., Trojan, J., Zhu, A. X., Yoon, J.-H., Sharma, S., Lin, Z.-Z., Chan, S. L., Faivre, S., Feun, L. G., … Kang, Y.-K. (2019). First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discovery, 9(12), 1696–1707. https://doi.org/10.1158/2159-8290.CD-19-0555
  • Kim, S. Y., Ahn, T., Bang, H., Ham, J. S., Kim, J., Kim, S. T., Jang, J., Shim, M., Kang, S. Y., Park, S. H., Min, B. H., Lee, H., Kang, W. K., Kim, K.-M., Park, W., & Lee, J. (2017). Acquired resistance to LY2874455 in FGFR2-amplified gastric cancer through an emergence of novel FGFR2-ACSL5 fusion. Oncotarget, 8(9), 15014–15022. https://doi.org/10.18632/oncotarget.14788
  • Kim, Y. T., Kim, S. E., Lee, W. J., Fumei, Z., Cho, M. S., Moon, J. S., Oh, H.-W., Park, H.-Y., & Kim, S. U. (2020). Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity. PLoS One. 15(12), e0234177. https://doi.org/10.1371/journal.pone.0234177
  • Kitai, H., & Ebi, H. (2017). Key roles of EMT for adaptive resistance to MEK inhibitor in KRAS mutant lung cancer. Small GTPases, 8(3), 172–176. https://doi.org/10.1080/21541248.2016.1210369
  • Klein, T., Vajpai, N., Phillips, J. J., Davies, G., Holdgate, G. A., Phillips, C., Tucker, J. A., Norman, R. A., Scott, A. D., Higazi, D. R., Lowe, D., Thompson, G. S., & Breeze, A. L. (2015). Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase. Nature Communications, 6, 7877. https://doi.org/10.1038/ncomms8877
  • Koinis, F., Corn, P., Parikh, N., Song, J., Vardaki, I., Mourkioti, I., Lin, S.-H., Logothetis, C., Panaretakis, T., & Gallick, G. (2020). Resistance to MET/VEGFR2 inhibition by cabozantinib is mediated by YAP/TBX5-dependent induction of FGFR1 in castration-resistant prostate cancer. Cancers, 12(1), E244. https://doi.org/10.3390/cancers12010244
  • Kommalapati, A., Tella, S. H., Borad, M., Javle, M., & Mahipal, A. (2021). FGFR inhibitors in oncology: Insight on the management of toxicities in clinical practice. Cancers, 13(12), 2968. https://doi.org/10.3390/cancers13122968
  • Kong, S., Cao, Y., Li, X., Li, Z., Xin, Y., & Meng, Y. (2020). MiR-3116 sensitizes glioma cells to temozolomide by targeting FGFR1 and regulating the FGFR1/PI3K/AKT pathway. Journal of Cellular and Molecular Medicine, 24(8), 4677–4686. https://doi.org/10.1111/jcmm.15133
  • Krakstad, C., Birkeland, E., Seidel, D., Kusonmano, K., Petersen, K., Mjøs, S., Hoivik, E. A., Wik, E., Halle, M. K., Øyan, A. M., Kalland, K.-H., Werner, H. M. J., Trovik, J., & Salvesen, H. (2012). High-throughput mutation profiling of primary and metastatic endometrial cancers identifies KRAS, FGFR2 and PIK3CA to be frequently mutated. PLoS One, 7(12), e52795. https://doi.org/10.1371/journal.pone.0052795
  • Krook, M. A., Reeser, J. W., Ernst, G., Barker, H., Wilberding, M., Li, G., Chen, H.-Z., & Roychowdhury, S. (2021). Fibroblast growth factor receptors in cancer: Genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. British Journal of Cancer, 124(5), 880–892. https://doi.org/10.1038/s41416-020-01157-0
  • Kucińska, M., Porębska, N., Lampart, A., Latko, M., Knapik, A., Zakrzewska, M., Otlewski, J., & Opaliński, Ł. (2019). Differential regulation of fibroblast growth factor receptor 1 trafficking and function by extracellular galectins. Cell Communication and Signaling: CCS, 17(1), 65. https://doi.org/10.1186/s12964-019-0371-1
  • Kurimoto, R., Ebata, T., Iwasawa, S., Ishiwata, T., Tada, Y., Tatsumi, K., & Takiguchi, Y. (2017). Pirfenidone may revert the epithelial-to-mesenchymal transition in human lung adenocarcinoma. Oncology Letters, 14(1), 944–950. https://doi.org/10.3892/ol.2017.6188
  • Kurimoto, R., Iwasawa, S., Ebata, T., Ishiwata, T., Sekine, I., Tada, Y., Tatsumi, K., Koide, S., Iwama, A., & Takiguchi, Y. (2016). Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. International Journal of Oncology, 48(5), 1825–1836. https://doi.org/10.3892/ijo.2016.3419
  • Lau, W. M., Teng, E., Huang, K. K., Tan, J. W., Das, K., Zang, Z., Chia, T., Teh, M., Kono, K., Yong, W. P., Shabbir, A., Tay, A., Phua, N. S., Tan, P., Chan, S. L., & So, J. B. Y. (2018). Acquired resistance to FGFR inhibitor in diffuse-type gastric cancer through an AKT-independent PKC-mediated phosphorylation of GSK3β. Molecular Cancer Therapeutics, 17(1), 232–242. https://doi.org/10.1158/1535-7163.MCT-17-0367
  • Lee, S., Rauch, J., & Kolch, W. (2020). Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. International Journal of Molecular Sciences, 21(3), E1102. https://doi.org/10.3390/ijms21031102
  • Li, C., Iida, M., Dunn, E. F., Ghia, A. J., & Wheeler, D. L. (2009). Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene, 28(43), 3801–3813. https://doi.org/10.1038/onc.2009.234
  • Li, C., Shen, Y., Ren, Y., Liu, W., Li, M., Liang, W., Liu, C., & Li, F. (2016). Oncogene mutation profiling reveals poor prognosis associated with FGFR1/3 mutation in liposarcoma. Human Pathology, 55, 143–150. https://doi.org/10.1016/j.humpath.2016.05.006
  • Li, P., Huang, T., Zou, Q., Liu, D., Wang, Y., Tan, X., Wei, Y., & Qiu, H. (2019). FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. Journal of Immunology (Baltimore, MD), 202(10), 3065–3075. https://doi.org/10.4049/jimmunol.1801199
  • Li, S., Payne, S., Wang, F., Claus, P., Su, Z., Groth, J., Geradts, J., de Ridder, G., Alvarez, R., Marcom, P. K., Pizzo, S. V., & Bachelder, R. E. (2015). Nuclear basic fibroblast growth factor regulates triple-negative breast cancer chemo-resistance. Breast Cancer Research: BCR, 17, 91. https://doi.org/10.1186/s13058-015-0590-3
  • Liang, D., Chen, Q., Guo, Y., Zhang, T., & Guo, W. (2017). Insight into resistance mechanisms of AZD4547 and E3810 to FGFR1 gatekeeper mutation via theoretical study. Drug Design, Development and Therapy, 11, 451–461. https://doi.org/10.2147/DDDT.S129991
  • Lieu, C., Heymach, J., Overman, M., Tran, H., & Kopetz, S. (2011). Beyond VEGF: Inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clinical Cancer Research, 17(19), 6130–6139. https://doi.org/10.1158/1078-0432.CCR-11-0659
  • Lin, C.-C., Melo, F. A., Ghosh, R., Suen, K. M., Stagg, L. J., Kirkpatrick, J., Arold, S. T., Ahmed, Z., & Ladbury, J. E. (2012). Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell, 149(7), 1514–1524. https://doi.org/10.1016/j.cell.2012.04.033
  • Liu, P. C. C., Koblish, H., Wu, L., Bowman, K., Diamond, S., DiMatteo, D., Zhang, Y., Hansbury, M., Rupar, M., Wen, X., Collier, P., Feldman, P., Klabe, R., Burke, K. A., Soloviev, M., Gardiner, C., He, X., Volgina, A., Covington, M., … Hollis, G. (2020). INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS One, 15(4), e0231877. https://doi.org/10.1371/journal.pone.0231877
  • Loriot, Y., Schuler, M. H., Iyer, G., Witt, O., Doi, T., Qin, S., Tabernero, J., Reardon, D. A., Massard, C., Palmer, D., Lugowska, I., Coward, J., Corassa, M., Stuyckens, K., Liao, H., Najmi, S., Hammond, C., Santiago-Walker, A. E., Sweiti, H., & Pant, S. (2022). Tumor agnostic efficacy and safety of erdafitinib in patients (pts) with advanced solid tumors with prespecified fibroblast growth factor receptor alterations (FGFRalt) in RAGNAR: Interim analysis (IA) results. Journal of Clinical Oncology, 40(16_suppl), 3007–3007. https://doi.org/10.1200/JCO.2022.40.16_suppl.3007
  • Luo, H., Zhang, T., Cheng, P., Li, D., Ogorodniitchouk, O., Lahmamssi, C., Wang, G., & Lan, M. (2020). Therapeutic implications of fibroblast growth factor receptor inhibitors in a combination regimen for solid tumors. Oncology Letters, 20(3), 2525–2536. https://doi.org/10.3892/ol.2020.11858
  • Magee, P., Shi, L., & Garofalo, M. (2015). Role of microRNAs in chemoresistance. Annals of Translational Medicine, 3(21), 332. https://doi.org/10.3978/j.issn.2305-5839.2015.11.32
  • Malchers, F., Dietlein, F., Schöttle, J., Lu, X., Nogova, L., Albus, K., Fernandez-Cuesta, L., Heuckmann, J. M., Gautschi, O., Diebold, J., Plenker, D., Gardizi, M., Scheffler, M., Bos, M., Seidel, D., Leenders, F., Richters, A., Peifer, M., Florin, A., … Thomas, R. K. (2014). Cell-autonomous and non-cell-autonomous mechanisms of transformation by amplified FGFR1 in lung cancer. Cancer Discovery, 4(2), 246–257. https://doi.org/10.1158/2159-8290.CD-13-0323
  • Malchers, F., Ercanoglu, M., Schütte, D., Castiglione, R., Tischler, V., Michels, S., Dahmen, I., Brägelmann, J., Menon, R., Heuckmann, J. M., George, J., Ansén, S., Sos, M. L., Soltermann, A., Peifer, M., Wolf, J., Büttner, R., & Thomas, R. K. (2017). Mechanisms of primary drug resistance in FGFR1-amplified lung cancer. Clinical Cancer Research, 23(18), 5527–5536. https://doi.org/10.1158/1078-0432.CCR-17-0478
  • Marmé, F., Werft, W., Benner, A., Burwinkel, B., Sinn, P., Sohn, C., Lichter, P., Hahn, M., & Schneeweiss, A. (2010). FGFR4 Arg388 genotype is associated with pathological complete response to neoadjuvant chemotherapy for primary breast cancer. Annals of Oncology, 21(8), 1636–1642. https://doi.org/10.1093/annonc/mdq017
  • Martina, J. A., Chen, Y., Gucek, M., & Puertollano, R. (2012). MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 8(6), 903–914. https://doi.org/10.4161/auto.19653
  • Memarzadeh, S., Xin, L., Mulholland, D. J., Mansukhani, A., Wu, H., Teitell, M. A., & Witte, O. N. (2007). Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell, 12(6), 572–585. https://doi.org/10.1016/j.ccr.2007.11.002
  • Meng, Q. H., Xu, E., Hildebrandt, M. A. T., Liang, D., Lu, K., Ye, Y., Wagar, E. A., & Wu, X. (2014). Genetic variants in the fibroblast growth factor pathway as potential markers of ovarian cancer risk, therapeutic response, and clinical outcome. Clinical Chemistry, 60(1), 222–232. https://doi.org/10.1373/clinchem.2013.211490
  • Mercade, T. M., Moreno, V., John, B., Morris, J. C., Sawyer, M. B., Yong, W. P., Gutierrez, M., Karasic, T. B., Sangro, B., Sheng-Shun, Y., Gentry, C., Kim, A., Kumar, P., MacKenzie, C., Rioux, N., Schindler, J., Selvaraj, A., & Finn, R. S. (2019). A phase I study of H3B-6527 in hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICC) patients (pts). Journal of Clinical Oncology, 37(15_suppl), 4095–4095. https://doi.org/10.1200/JCO.2019.37.15_suppl.4095
  • Montazeri, K., & Bellmunt, J. (2020). Erdafitinib for the treatment of metastatic bladder cancer. Expert Review of Clinical Pharmacology, 13(1), 1–6. https://doi.org/10.1080/17512433.2020.1702025
  • Mori, S., Kodaira, M., Ito, A., Okazaki, M., Kawaguchi, N., Hamada, Y., Takada, Y., & Matsuura, N. (2015). Enhanced expression of integrin αvβ3 induced by TGF-β is required for the enhancing effect of fibroblast growth factor 1 (FGF1) in TGF-β-induced epithelial-mesenchymal transition (EMT) in mammary epithelial cells. PLoS One. 10(9), e0137486. https://doi.org/10.1371/journal.pone.0137486
  • Mori, S., Tran, V., Nishikawa, K., Kaneda, T., Hamada, Y., Kawaguchi, N., Fujita, M., Takada, Y. K., Matsuura, N., Zhao, M., & Takada, Y. (2013). A dominant-negative FGF1 mutant (the R50E mutant) suppresses tumorigenesis and angiogenesis. PLoS One, 8(2), e57927. https://doi.org/10.1371/journal.pone.0057927
  • Necchi, A., Castellano, D., Mellado, B., Pang, S., Urun, Y., Park, S. H., Vaishampayan, U., Currie, G., Abella-Dominicis, E., & Pal, S. (2019). Fierce-21: Phase II study of vofatmab (B-701), a selective inhibitor of FGFR3, as salvage therapy in metastatic urothelial carcinoma (mUC). Journal of Clinical Oncology, 37, 409–409. https://doi.org/10.1200/JCO.2019.37.7_suppl.409
  • Nogova, L., Sequist, L. V., Perez Garcia, J. M., Andre, F., Delord, J.-P., Hidalgo, M., Schellens, J. H. M., Cassier, P. A., Camidge, D. R., Schuler, M., Vaishampayan, U., Burris, H. A., Tian, G. G., Campone, M., Wainberg, Z. A., Lim, W.-T., LoRusso, P., Shapiro, G. I., Parker, K., … Wolf, J. (2017). Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: Results of a global phase I, dose-escalation and dose-expansion study. Journal of Clinical Oncology, 35(2), 157–165. https://doi.org/10.1200/JCO.2016.67.2048
  • Nomura, S., Yoshitomi, H., Takano, S., Shida, T., Kobayashi, S., Ohtsuka, M., Kimura, F., Shimizu, H., Yoshidome, H., Kato, A., & Miyazaki, M. (2008). FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer. British Journal of Cancer, 99(2), 305–313. https://doi.org/10.1038/sj.bjc.6604473
  • Ochiiwa, H., Fujita, H., Itoh, K., Sootome, H., Hashimoto, A., Fujioka, Y., Nakatsuru, Y., Oda, N., Yonekura, K., Hirai, H., & Utsugi, T. (2013). Abstract A270: TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Molecular Cancer Therapeutics, 12(11 supplement), A270. https://doi.org/10.1158/1535-7163.TARG-13-A270
  • Okamoto, I., Kaneda, H., Satoh, T., Okamoto, W., Miyazaki, M., Morinaga, R., Ueda, S., Terashima, M., Tsuya, A., Sarashina, A., Konishi, K., Arao, T., Nishio, K., Kaiser, R., & Nakagawa, K. (2010). Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Molecular Cancer Therapeutics, 9(10), 2825–2833. https://doi.org/10.1158/1535-7163.MCT-10-0379
  • Opalinski, L., Szczepara, M., Sokolowska-Wedzina, A., Zakrzewska, M., & Otlewski, J. (2017). The autoinhibitory function of D1 domain of FGFR1 goes beyond the inhibition of ligand binding. The International Journal of Biochemistry & Cell Biology, 89, 193–198. https://doi.org/10.1016/j.biocel.2017.06.015
  • Ornitz, D. M., & Itoh, N. (2015). The Fibroblast Growth Factor signaling pathway. Wiley Interdisciplinary Reviews. Developmental Biology, 4(3), 215–266. https://doi.org/10.1002/wdev.176
  • Owen, K. L., Brockwell, N. K., & Parker, B. S. (2019). JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression. Cancers, 11(12), E2002. https://doi.org/10.3390/cancers11122002
  • Pacini, L., Jenks, A. D., Lima, N. C., & Huang, P. H. (2021). Targeting the fibroblast growth factor receptor (FGFR) family in lung cancer. Cells, 10(5), 1154. https://doi.org/10.3390/cells10051154
  • Packer, L. M., Geng, X., Bonazzi, V. F., Ju, R. J., Mahon, C. E., Cummings, M. C., Stephenson, S.-A., & Pollock, P. M. (2017). PI3K inhibitors synergize with FGFR inhibitors to enhance antitumor responses in FGFR2mutant endometrial cancers. Molecular Cancer Therapeutics, 16(4), 637–648. https://doi.org/10.1158/1535-7163.MCT-16-0415
  • Paik, P. K., Shen, R., Berger, M. F., Ferry, D., Soria, J.-C., Mathewson, A., Rooney, C., Smith, N. R., Cullberg, M., Kilgour, E., Landers, D., Frewer, P., Brooks, N., & André, F. (2017). A phase Ib open-label multicenter study of AZD4547 in patients with advanced squamous cell lung cancers. Clinical Cancer Research, 23(18), 5366–5373. https://doi.org/10.1158/1078-0432.CCR-17-0645
  • Pal, S. K., Rosenberg, J. E., Hoffman-Censits, J. H., Berger, R., Quinn, D. I., Galsky, M. D., Wolf, J., Dittrich, C., Keam, B., Delord, J.-P., Schellens, J. H. M., Gravis, G., Medioni, J., Maroto, P., Sriuranpong, V., Charoentum, C., Burris, H. A., Grünwald, V., Petrylak, D., … Bajorin, D. F. (2018). Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discovery, 8(7), 812–821. https://doi.org/10.1158/2159-8290.CD-18-0229
  • Palakurthi, S., Kuraguchi, M., Zacharek, S., Zudaire, E., Huang, W., Bonal, D., Liu, J., Dhaneshwar, A., DePeaux, K., Gowaski, M., Bailey, D., Regan, S., Ivanova, E., Ferrante, C., English, J., Khosla, A., Beck, A., Rytlewski, J., Sanders, C., & Lorenzi, M. (2019). The combined effect of FGFR inhibition and PD-1 blockade promotes tumor-intrinsic induction of antitumor immunity. Cancer Immunology Research, 7(9), 1457-1471. https://doi.org/10.1158/2326-6066.CIR-18-0595
  • Pan, Y.-L., Liu, Y.-L., & Chen, J.-Z. (2018). Computational simulation studies on the binding selectivity of 1-(1h-benzimidazol-5-yl)-5-aminopyrazoles in complexes with FGFR1 and FGFR4. Molecules (Basel, Switzerland), 23(4), E767. https://doi.org/10.3390/molecules23040767
  • Papadopoulos, K. P., El-Rayes, B. F., Tolcher, A. W., Patnaik, A., Rasco, D. W., Harvey, R. D., LoRusso, P. M., Sachdev, J. C., Abbadessa, G., Savage, R. E., Hall, T., Schwartz, B., Wang, Y., Kazakin, J., & Shaib, W. L. (2017). A phase 1 study of ARQ 087, an oral pan-FGFR inhibitor in patients with advanced solid tumours. British Journal of Cancer, 117(11), 1592–1599. https://doi.org/10.1038/bjc.2017.330
  • Park, J. Y., Kim, P.-J., Shin, S.-J., Lee, J.-L., Cho, Y. M., & Go, H. (2020). FGFR1 is associated with c-MYC and proangiogenic molecules in metastatic renal cell carcinoma under anti-angiogenic therapy. Histopathology, 76(6), 838–851. https://doi.org/10.1111/his.14076
  • Parker, B. C., Engels, M., Annala, M., & Zhang, W. (2014). Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. The Journal of Pathology, 232(1), 4–15. https://doi.org/10.1002/path.4297
  • Peifer, M., Fernández-Cuesta, L., Sos, M. L., George, J., Seidel, D., Kasper, L. H., Plenker, D., Leenders, F., Sun, R., Zander, T., Menon, R., Koker, M., Dahmen, I., Müller, C., Di Cerbo, V., Schildhaus, H.-U., Altmüller, J., Baessmann, I., Becker, C., … Thomas, R. K. (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 44(10), 1104–1110. https://doi.org/10.1038/ng.2396
  • Piao, S., & Amaravadi, R. K. (2016). Targeting the lysosome in cancer. Annals of the New York Academy of Sciences, 1371(1), 45–54. https://doi.org/10.1111/nyas.12953
  • Plowright, E. E., Li, Z., Bergsagel, P. L., Chesi, M., Barber, D. L., Branch, D. R., Hawley, R. G., & Stewart, A. K. (2000). Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood, 95(3), 992–998.
  • Porębska, N., Knapik, A., Poźniak, M., Krzyścik, M. A., Zakrzewska, M., Otlewski, J., & Opaliński, Ł. (2021a). Intrinsically fluorescent oligomeric cytotoxic conjugates toxic for FGFR1-overproducing cancers. Biomacromolecules, 22(12), 5349–5362. https://doi.org/10.1021/acs.biomac.1c01280
  • Porębska, N., Poźniak, M., Matynia, A., Żukowska, D., Zakrzewska, M., Otlewski, J., & Opaliński, Ł. (2021b). Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine & Growth Factor Reviews, 60, 89–106. https://doi.org/10.1016/j.cytogfr.2021.03.004
  • Porta, C., Paglino, C., Imarisio, I., Ganini, C., Sacchi, L., Quaglini, S., Giunta, V., & De Amici, M. (2013). Changes in circulating pro-angiogenic cytokines, other than VEGF, before progression to sunitinib therapy in advanced renal cell carcinoma patients. Oncology, 84(2), 115–122. https://doi.org/10.1159/000342099
  • Powers, C. J., McLeskey, S. W., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer, 7(3), 165–197. https://doi.org/10.1677/erc.0.0070165
  • Poźniak, M., Porębska, N., Jastrzębski, K., Krzyścik, M. A., Kucińska, M., Zarzycka, W., Barbach, A., Zakrzewska, M., Otlewski, J., Miączyńska, M., & Opaliński, Ł. (2021a). Modular self-assembly system for development of oligomeric, highly internalizing and potent cytotoxic conjugates targeting fibroblast growth factor receptors. Journal of Biomedical Science, 28(1), 69. https://doi.org/10.1186/s12929-021-00767-x
  • Poźniak, M., Porębska, N., Krzyścik, M. A., Sokołowska-Wędzina, A., Jastrzębski, K., Sochacka, M., Szymczyk, J., Zakrzewska, M., Otlewski, J., & Opaliński, Ł. (2021b). The cytotoxic conjugate of highly internalizing tetravalent antibody for targeting FGFR1-overproducing cancer cells. Molecular Medicine (Cambridge, MA), 27(1), 46. https://doi.org/10.1186/s10020-021-00306-2
  • Quintanal-Villalonga, Á., Ojeda-Márquez, L., Marrugal, Á., Yagüe, P., Ponce-Aix, S., Salinas, A., Carnero, A., Ferrer, I., Molina-Pinelo, S., & Paz-Ares, L. (2018). The FGFR4-388arg variant promotes lung cancer progression by N-cadherin induction. Scientific Reports, 8(1), 2394. https://doi.org/10.1038/s41598-018-20570-3
  • Roidl, A., Berger, H.-J., Kumar, S., Bange, J., Knyazev, P., & Ullrich, A. (2009). Resistance to chemotherapy is associated with fibroblast growth factor receptor 4 up-regulation. Clinical Cancer Research, 15(6), 2058–2066. https://doi.org/10.1158/1078-0432.CCR-08-0890
  • Ryan, M. R., Sohl, C. D., Luo, B., & Anderson, K. S. (2019). The FGFR1 V561M gatekeeper mutation drives AZD4547 resistance through STAT3 activation and EMT. Molecular Cancer Research: MCR, 17(2), 532–543. https://doi.org/10.1158/1541-7786.MCR-18-0429
  • Sanchez-Heras, E., Howell, F. V., Williams, G., & Doherty, P. (2006). The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. The Journal of Biological Chemistry, 281(46), 35208–35216. https://doi.org/10.1074/jbc.M608655200
  • Santolla, M. F., & Maggiolini, M. (2020). The FGF/FGFR system in breast cancer: Oncogenic features and therapeutic perspectives. Cancers, 12(10), 3029. https://doi.org/10.3390/cancers12103029
  • Sarabipour, S., & Hristova, K. (2016). Mechanism of FGF receptor dimerization and activation. Nature Communications, 7, 10262. https://doi.org/10.1038/ncomms10262
  • Schönau, K. K., Steger, G. G., & Mader, R. M. (2007). Angiogenic effect of naive and 5-fluorouracil resistant colon carcinoma on endothelial cells in vitro. Cancer Letters, 257(1), 73–78. https://doi.org/10.1016/j.canlet.2007.07.001
  • Schuler, M., Cho, B. C., Sayehli, C. M., Navarro, A., Soo, R. A., Richly, H., Cassier, P. A., Tai, D., Penel, N., Nogova, L., Park, S. H., Schostak, M., Gajate, P., Cathomas, R., Rajagopalan, P., Grevel, J., Bender, S., Boix, O., Nogai, H., … Joerger, M. (2019). Rogaratinib in patients with advanced cancers selected by FGFR mRNA expression: A phase 1 dose-escalation and dose-expansion study. The Lancet. Oncology, 20(10), 1454–1466. https://doi.org/10.1016/S1470-2045(19)30412-7
  • Seo, A. N., Jin, Y., Lee, H. J., Sun, P.-L., Kim, H., Jheon, S., Kim, K., Lee, C.-T., & Chung, J.-H. (2014). FGFR1 amplification is associated with poor prognosis and smoking in non-small-cell lung cancer. Virchows Archiv: An International Journal of Pathology, 465(5), 547–558. https://doi.org/10.1007/s00428-014-1634-2
  • Sequist, L. V., Cassier, P., Varga, A., Tabernero, J., Schellens, J. H., Delord, J.-P., LoRusso, P., Camidge, D. R., Medina, M. H., Schuler, M., Campone, M., Tian, G. G., Wong, S., Corral, J., Isaacs, R., Sen, S. K., Porta, D. G., Kulkarni, S. G., Lefebvre, C., & Wolf, J. (2014). Abstract CT326: Phase I study of BGJ398, a selective pan-FGFR inhibitor in genetically preselected advanced solid tumors. Cancer Research, 74(19_Supplement), CT326. https://doi.org/10.1158/1538-7445.AM2014-CT326
  • Servetto, A., Kollipara, R., Formisano, L., Lin, C.-C., Lee, K., Sudhan, D. R., Gonzalez-Ericsson, P. I., Chatterjee, S., Guerrero-Zotano, A., Mendiratta, S., Akamatsu, H., James, N., Bianco, R., Hanker, A. B., Kittler, R., & Arteaga, C. L. (2021). Nuclear FGFR1 regulates gene transcription and promotes antiestrogen resistance in ER + breast cancer. Clinical Cancer Research, 27(15), 4379–4396. https://doi.org/10.1158/1078-0432.CCR-20-3905
  • Shoji, K., Teishima, J., Hayashi, T., Ohara, S., Mckeehan, W. L., & Matsubara, A. (2014). Restoration of fibroblast growth factor receptor 2IIIb enhances the chemosensitivity of human prostate cancer cells. Oncology Reports, 32(1), 65–70. https://doi.org/10.3892/or.2014.3200
  • Shukla, N., Ameur, N., Yilmaz, I., Nafa, K., Lau, C.-Y., Marchetti, A., Borsu, L., Barr, F. G., & Ladanyi, M. (2012). Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clinical Cancer Research, 18(3), 748–757. https://doi.org/10.1158/1078-0432.CCR-11-2056
  • Sluzalska, K. D., Slawski, J., Sochacka, M., Lampart, A., Otlewski, J., & Zakrzewska, M. (2021). Intracellular partners of fibroblast growth factors 1 and 2—Implications for functions. Cytokine & Growth Factor Reviews, 57, 93–111. https://doi.org/10.1016/j.cytogfr.2020.05.004
  • Smyth, E. C., Turner, N. C., Pearson, A., Peckitt, C., Chau, I., Watkins, D. J., Starling, N., Rao, S., Gillbanks, A., Kilgour, E., Sumpter, K. A., Smith, N. R., Cutts, R., Rooney, C., Thomas, A. L., Ajaz, M. A., Chua, S., Brown, G., Popat, S., & Cunningham, D. (2016). Phase II study of AZD4547 in FGFR amplified tumours: Gastroesophageal cancer (GC) cohort pharmacodynamic and biomarker results. Journal of Clinical Oncology, 34(4_suppl), 154–154. https://doi.org/10.1200/jco.2016.34.4_suppl.154
  • Sohl, C. D., Ryan, M. R., Luo, B., Frey, K. M., & Anderson, K. S. (2015). Illuminating the molecular mechanisms of tyrosine kinase inhibitor resistance for the FGFR1 gatekeeper mutation: The Achilles’ heel of targeted therapy. ACS Chemical Biology, 10(5), 1319–1329. https://doi.org/10.1021/acschembio.5b00014
  • Sommer, A., Kopitz, C., Schatz, C. A., Nising, C. F., Mahlert, C., Lerchen, H.-G., Stelte-Ludwig, B., Hammer, S., Greven, S., Schuhmacher, J., Braun, M., Zierz, R., Wittemer-Rump, S., Harrenga, A., Dittmer, F., Reetz, F., Apeler, H., Jautelat, R., Huynh, H., … Kreft, B. (2016). Preclinical efficacy of the auristatin-based antibody–drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Research, 76(21), 6331–6339. https://doi.org/10.1158/0008-5472.CAN-16-0180
  • Song, L., Turkson, J., Karras, J. G., Jove, R., & Haura, E. B. (2003). Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene, 22(27), 4150–4165. https://doi.org/10.1038/sj.onc.1206479
  • Sootome, H., Fujioka, Y., Miura, A., Fujita, H., Hirai, H., & Utsugi, T. (2014). Abstract A271: TAS-120, an irreversible FGFR inhibitor, was effective in tumors harboring FGFR mutations, refractory or resistant to ATP competitive inhibitors. Molecular Cancer Therapeutics, 12, A271. A271. https://doi.org/10.1158/1535-7163.TARG-13-A271
  • Soria, J.-C., DeBraud, F., Bahleda, R., Adamo, B., Andre, F., Dientsmann, R., Delmonte, A., Cereda, R., Isaacson, J., Litten, J., Allen, A., Dubois, F., Saba, C., Robert, R., D’Incalci, M., Zucchetti, M., Camboni, M. G., & Tabernero, J. (2014). Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Annals of Oncology, 25(11), 2244–2251. https://doi.org/10.1093/annonc/mdu390
  • Spielberger, R., Stiff, P., Bensinger, W., Gentile, T., Weisdorf, D., Kewalramani, T., Shea, T., Yanovich, S., Hansen, K., Noga, S., McCarty, J., LeMaistre, C. F., Sung, E. C., Blazar, B. R., Elhardt, D., Chen, M.-G., & Emmanouilides, C. (2004). Palifermin for oral mucositis after intensive therapy for hematologic cancers. The New England Journal of Medicine, 351(25), 2590–2598. https://doi.org/10.1056/NEJMoa040125
  • Squires, M., Ward, G., Saxty, G., Berdini, V., Cleasby, A., King, P., Angibaud, P., Perera, T., Fazal, L., Ross, D., Jones, C. G., Madin, A., Benning, R. K., Vickerstaffe, E., O’Brien, A., Frederickson, M., Reader, M., Hamlett, C., Batey, M. A., … Thompson, N. T. (2011). Potent, selective inhibitors of fibroblast growth factor receptor define fibroblast growth factor dependence in preclinical cancer models. Molecular Cancer Therapeutics, 10(9), 1542–1552. https://doi.org/10.1158/1535-7163.MCT-11-0426
  • Statsenko, G., Fedyanin, M., Moiseyenko, V., Vladimirova, L. Y., Tsimafeyeu, I., & Tjulandin, S. (2020). A phase Ib study of alofanib, an allosteric FGFR2 inhibitor, in patients with advanced or metastatic gastric cancer. Journal of Clinical Oncology, 38(4_suppl), TPS466. TPS466. https://doi.org/10.1200/JCO.2020.38.4_suppl.TPS466
  • Sternberg, C. N., Petrylak, D. P., Bellmunt, J., Nishiyama, H., Necchi, A., Gurney, H., Lee, J.-L., van der Heijden, M. S., Rosenbaum, E., Penel, N., Pang, S.-T., Li, J.-R., García del Muro, X., Joly, F., Pápai, Z., Bao, W., Ellinghaus, P., Lu, C., Sierecki, M., … Quinn, D. I. (2023). FORT-1: Phase II/III study of rogaratinib versus chemotherapy in patients with locally advanced or metastatic urothelial carcinoma selected based on FGFR1/3 mRNA expression. Journal of Clinical Oncology, 41(3), 629-639. https://doi.org/10.1200/JCO.21.02303
  • Sugiyama, N., Varjosalo, M., Meller, P., Lohi, J., Chan, K. M., Zhou, Z., Alitalo, K., Taipale, J., Keski-Oja, J., & Lehti, K. (2010). FGF receptor-4 (FGFR4) polymorphism acts as an activity switch of a membrane type 1 matrix metalloproteinase-FGFR4 complex. Proceedings of the National Academy of Sciences of the United States of America, 107(36), 15786–15791. https://doi.org/10.1073/pnas.0914459107
  • Surguladze, D., Pennello, A., Ren, X., Mack, T., Rigby, A., Balderes, P., Navarro, E., Amaladas, N., Eastman, S., Topper, M., Yao, Y., Moxham, C., Plowman, G., & Ludwig, D. (2019). Abstract 4835: LY3076226, a novel anti-FGFR3 antibody drug conjugate exhibits potent and durable anti-tumor activity in tumor models harboring FGFR3 mutations or fusions. Cancer Research, 79(13_Supplement), 4835. https://doi.org/10.1158/1538-7445.AM2019-4835
  • Świderska, K. W., Szlachcic, A., Opaliński, Ł., Zakrzewska, M., & Otlewski, J. (2018). FGF2 dual warhead conjugate with monomethyl auristatin E and α-amanitin displays a cytotoxic effect towards cancer cells overproducing FGF receptor 1. International Journal of Molecular Sciences, 19(7), 2098. https://doi.org/10.3390/ijms19072098
  • Szybowska, P., Kostas, M., Wesche, J., Haugsten, E. M., & Wiedlocha, A. (2021). Negative regulation of FGFR (fibroblast growth factor receptor) signaling. Cells, 10(6), 1342. https://doi.org/10.3390/cells10061342
  • Szymczyk, J., Sluzalska, K. D., Materla, I., Opalinski, L., Otlewski, J., & Zakrzewska, M. (2021). FGF/FGFR-dependent molecular mechanisms underlying anti-cancer drug resistance. Cancers, 13(22), 5796. https://doi.org/10.3390/cancers13225796
  • Tabernero, J., Bahleda, R., Dienstmann, R., Infante, J. R., Mita, A., Italiano, A., Calvo, E., Moreno, V., Adamo, B., Gazzah, A., Zhong, B., Platero, S. J., Smit, J. W., Stuyckens, K., Chatterjee-Kishore, M., Rodon, J., Peddareddigari, V., Luo, F. R., & Soria, J.-C. (2015). Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. Journal of Clinical Oncology, 33(30), 3401–3408. https://doi.org/10.1200/JCO.2014.60.7341
  • Tan, F. H., Putoczki, T. L., Stylli, S. S., & Luwor, R. B. (2019). Ponatinib: A novel multi-tyrosine kinase inhibitor against human malignancies. OncoTargets and Therapy, 12, 635–645. https://doi.org/10.2147/OTT.S189391
  • Tan, L., Wang, J., Tanizaki, J., Huang, Z., Aref, A. R., Rusan, M., Zhu, S.-J., Zhang, Y., Ercan, D., Liao, R. G., Capelletti, M., Zhou, W., Hur, W., Kim, N., Sim, T., Gaudet, S., Barbie, D. A., Yeh, J.-R J., Yun, C.-H., … Gray, N. S. (2014). Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 111(45), E4869–4877. https://doi.org/10.1073/pnas.1403438111
  • Tassone, E., Valacca, C., & Mignatti, P. (2015). Membrane-Type 1 matrix metalloproteinase downregulates fibroblast growth factor-2 binding to the cell surface and intracellular signaling. Journal of Cellular Physiology, 230(2), 366–377. https://doi.org/10.1002/jcp.24717
  • Tayel, A., Abd El Galil, K. H., Ebrahim, M. A., Ibrahim, A. S., El-Gayar, A. M., & Al-Gayyar, M. M. H. (2014). Suramin inhibits hepatic tissue damage in hepatocellular carcinoma through deactivation of heparanase enzyme. European Journal of Pharmacology, 728, 151–160. https://doi.org/10.1016/j.ejphar.2014.02.001
  • Thakur, V., Zhang, K., Savadelis, A., Zmina, P., Aguila, B., Welford, S. M., Abdul-Karim, F., Bonk, K. W., Keri, R. A., & Bedogni, B. (2019). The membrane tethered matrix metalloproteinase MT1-MMP triggers an outside-in DNA damage response that impacts chemo- and radiotherapy responses of breast cancer. Cancer Letters, 443, 115–124. https://doi.org/10.1016/j.canlet.2018.11.031
  • Tomé, M., Tchorz, J., Gassmann, M., & Bettler, B. (2019). Constitutive activation of Notch2 signalling confers chemoresistance to neural stem cells via transactivation of fibroblast growth factor receptor-1. Stem Cell Research, 35, 101390. https://doi.org/10.1016/j.scr.2019.101390
  • Tomlinson, D. C., & Knowles, M. A. (2010). Altered splicing of FGFR1 is associated with high tumor grade and stage and leads to increased sensitivity to FGF1 in bladder cancer. The American Journal of Pathology, 177(5), 2379–2386. https://doi.org/10.2353/ajpath.2010.100354
  • Touat, M., Ileana, E., Postel-Vinay, S., André, F., & Soria, J.-C. (2015). Targeting FGFR signaling in cancer. Clinical Cancer Research, 21(12), 2684–2694. https://doi.org/10.1158/1078-0432.CCR-14-2329
  • Tsimafeyeu, I., Ludes-Meyers, J., Stepanova, E., Daeyaert, F., Khochenkov, D., Joose, J.-B., Solomko, E., Van Akene, K., Peretolchina, N., Yin, W., Ryabaya, O., Byakhov, M., & Tjulandin, S. (2016). Targeting FGFR2 with alofanib (RPT835) shows potent activity in tumour models. European Journal of Cancer (Oxford, England: 1990), 61, 20–28. https://doi.org/10.1016/j.ejca.2016.03.068
  • Tucker, J. A., Klein, T., Breed, J., Breeze, A. L., Overman, R., Phillips, C., & Norman, R. A. (2014). Structural insights into FGFR kinase isoform selectivity: Diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure (London, England: 1993), 22(12), 1764–1774. https://doi.org/10.1016/j.str.2014.09.019
  • Turkington, R. C., Longley, D. B., Allen, W. L., Stevenson, L., McLaughlin, K., Dunne, P. D., Blayney, J. K., Salto-Tellez, M., Van Schaeybroeck, S., & Johnston, P. G. (2014). Fibroblast growth factor receptor 4 (FGFR4): A targetable regulator of drug resistance in colorectal cancer. Cell Death & Disease, 5(2), e1046. https://doi.org/10.1038/cddis.2014.10
  • Turner, N., Lambros, M. B., Horlings, H. M., Pearson, A., Sharpe, R., Natrajan, R., Geyer, F. C., van Kouwenhove, M., Kreike, B., Mackay, A., Ashworth, A., van de Vijver, M. J., & Reis-Filho, J. S. (2010). Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene, 29(14), 2013–2023. https://doi.org/10.1038/onc.2009.489
  • Ucuzian, A., A., Gassman, A., A., East, A. T., & Greisler, H. P. (2010). Molecular mediators of angiogenesis. Journal of Burn Care & Research, 31(1), 158. https://doi.org/10.1097/BCR.0b013e3181c7ed82
  • Van Cutsem, E., Bang, Y.-J., Mansoor, W., Petty, R. D., Chao, Y., Cunningham, D., Ferry, D. R., Smith, N. R., Frewer, P., Ratnayake, J., Stockman, P. K., Kilgour, E., & Landers, D. (2017). A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Annals of Oncology, 28(6), 1316–1324. https://doi.org/10.1093/annonc/mdx107
  • Vhora, I., Patil, S., Bhatt, P., & Misra, A. (2015). Protein- and peptide-drug conjugates: An emerging drug delivery technology. Advances in Protein Chemistry and Structural Biology, 98, 1–55. https://doi.org/10.1016/bs.apcsb.2014.11.001
  • Vijayan, R. S. K., He, P., Modi, V., Duong-Ly, K. C., Ma, H., Peterson, J. R., Dunbrack, R. L., & Levy, R. M. (2015). Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. Journal of Medicinal Chemistry, 58(1), 466–479. https://doi.org/10.1021/jm501603h
  • Villalona-Calero, M. A., Otterson, G. A., Wientjes, M. G., Weber, F., Bekaii-Saab, T., Young, D., Murgo, A. J., Jensen, R., Yeh, T.-K., Wei, Y., Zhang, Y., Eng, C., Grever, M., & Au, J. L.-S. (2008). Noncytotoxic suramin as a chemosensitizer in patients with advanced non-small-cell lung cancer: A phase II study. Annals of Oncology, 19(11), 1903–1909. https://doi.org/10.1093/annonc/mdn412
  • Vitale, D. L., Spinelli, F. M., Del Dago, D., Icardi, A., Demarchi, G., Caon, I., García, M., Bolontrade, M. F., Passi, A., Cristina, C., & Alaniz, L. (2018). Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression. Oncotarget, 9(93), 36585–36602. https://doi.org/10.18632/oncotarget.26379
  • Voss, M. H., Hierro, C., Heist, R. S., Cleary, J. M., Meric-Bernstam, F., Tabernero, J., Janku, F., Gandhi, L., Iafrate, A. J., Borger, D. R., Ishii, N., Hu, Y., Kirpicheva, Y., Nicolas-Metral, V., Pokorska-Bocci, A., Vaslin Chessex, A., Zanna, C., Flaherty, K. T., & Baselga, J. (2019). A phase I, open-label, multicenter, dose-escalation study of the oral selective FGFR inhibitor debio 1347 in patients with advanced solid tumors harboring FGFR gene alterations. Clinical Cancer Research, 25(9), 2699–2707. https://doi.org/10.1158/1078-0432.CCR-18-1959
  • Wang, K., Ji, W., Yu, Y., Li, Z., Niu, X., Xia, W., & Lu, S. (2018). FGFR1-ERK1/2-SOX2 axis promotes cell proliferation, epithelial-mesenchymal transition, and metastasis in FGFR1-amplified lung cancer. Oncogene, 37(39), 5340–5354. https://doi.org/10.1038/s41388-018-0311-3
  • Weiss, A., Adler, F., Buhles, A., Stamm, C., Fairhurst, R. A., Kiffe, M., Sterker, D., Centeleghe, M., Wartmann, M., Kinyamu-Akunda, J., Schadt, H. S., Couttet, P., Wolf, A., Wang, Y., Barzaghi-Rinaudo, P., Murakami, M., Kauffmann, A., Knoepfel, T., Buschmann, N., … Graus Porta, D. (2019). FGF401, a first-in-class highly selective and potent FGFR4 inhibitor for the treatment of FGF19-driven hepatocellular cancer. Molecular Cancer Therapeutics, 18(12), 2194–2206. https://doi.org/10.1158/1535-7163.MCT-18-1291
  • Wu, D., Guo, M., Min, X., Dai, S., Li, M., Tan, S., Li, G., Chen, X., Ma, Y., Li, J., Jiang, L., Qu, L., Zhou, Z., Chen, Z., Chen, L., Xu, G., & Chen, Y. (2018). LY2874455 potently inhibits FGFR gatekeeper mutants and overcomes mutation-based resistance. Chemical Communications (Cambridge, England), 54(85), 12089–12092. https://doi.org/10.1039/c8cc07546h
  • Xie, Y., Su, N., Yang, J., Tan, Q., Huang, S., Jin, M., Ni, Z., Zhang, B., Zhang, D., Luo, F., Chen, H., Sun, X., Feng, J. Q., Qi, H., & Chen, L. (2020). FGF/FGFR signaling in health and disease. Signal Transduction and Targeted Therapy, 5, 181. https://doi.org/10.1038/s41392-020-00222-7
  • Xue, W.-J., Li, M.-T., Chen, L., Sun, L.-P., & Li, Y.-Y. (2018). Recent developments and advances of FGFR as a potential target in cancer. Future Medicinal Chemistry, 10(17), 2109–2126. https://doi.org/10.4155/fmc-2018-0103
  • Yamamoto, N., Ryoo, B.-Y., Keam, B., Kudo, M., Lin, C.-C., Kunieda, F., Ball, H. A., Moran, D., Komatsu, K., Takeda, K., Fukuda, M., Furuse, J., Morita, S., & Doi, T. (2020). A phase 1 study of oral ASP5878, a selective small-molecule inhibitor of fibroblast growth factor receptors 1-4, as a single dose and multiple doses in patients with solid malignancies. Investigational New Drugs, 38(2), 445–456. https://doi.org/10.1007/s10637-019-00780-w
  • Yang, W., Yao, Y.-W., Zeng, J.-L., Liang, W.-J., Wang, L., Bai, C.-Q., Liu, C.-H., & Song, Y. (2014). Prognostic value of FGFR1 gene copy number in patients with non-small cell lung cancer: A meta-analysis. Journal of Thoracic Disease, 6(6), 803–809. https://doi.org/10.3978/j.issn.2072-1439.2014.05.02
  • Young, R. J., Fernando, M., Hughes, D., Brown, N. J., & Woll, P. J. (2014). Angiogenic growth factor expression in benign and malignant vascular tumours. Experimental and Molecular Pathology, 97(1), 148–153. https://doi.org/10.1016/j.yexmp.2014.06.010
  • Yoza, K., Himeno, R., Amano, S., Kobashigawa, Y., Amemiya, S., Fukuda, N., Kumeta, H., Morioka, H., & Inagaki, F. (2016). Biophysical characterization of drug-resistant mutants of fibroblast growth factor receptor 1. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 21(10), 1049–1058. https://doi.org/10.1111/gtc.12405
  • Yue, S., Li, Y., Chen, X., Wang, J., Li, M., Chen, Y., & Wu, D. (2021). FGFR-TKI resistance in cancer: Current status and perspectives. Journal of Hematology & Oncology, 14, 23. https://doi.org/10.1186/s13045-021-01040-2
  • Zhang, Q., Stummer, B. E., Guo, Q., Zhang, W., Zhang, X., Zhang, L., & Harvey, P. R. (2021). Quantification of Pseudomonas protegens FD6 and Bacillus subtilis NCD-2 in soil and the wheat rhizosphere and suppression of root pathogenic Rhizoctonia solani AG-8. Biological Control, 154, 104504. https://doi.org/10.1016/j.biocontrol.2020.104504
  • Zhang, Y., Song, S., Yang, F., Au, J. L., & Wientjes, M. G. (2001). Nontoxic doses of suramin enhance activity of doxorubicin in prostate tumors. The Journal of Pharmacology and Experimental Therapeutics, 299(2), 426–433.
  • Zhao, M., Zhuo, M.-L., Zheng, X., Su, X., & Meric-Bernstam, F. (2019). FGFR1β is a driver isoform of FGFR1 alternative splicing in breast cancer cells. Oncotarget, 10(1), 30–44. https://doi.org/10.18632/oncotarget.26530
  • Zheng, J., Zhang, W., Li, L., He, Y., Wei, Y., Dang, Y., Nie, S., & Guo, Z. (2022). Signaling pathway and small-molecule drug discovery of FGFR: A comprehensive review. Frontiers in Chemistry, 10, 860985. https://doi.org/10.3389/fchem.2022.860985
  • Zhitomirsky, B., & Assaraf, Y. G. (2015). Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget, 6(2), 1143–1156. https://doi.org/10.18632/oncotarget.2732
  • Zhitomirsky, B., Yunaev, A., Kreiserman, R., Kaplan, A., Stark, M., & Assaraf, Y. G. (2018). Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death & Disease, 9(12), 1191. https://doi.org/10.1038/s41419-018-1227-0
  • Zhou, C., Zhu, L., Guo, J., Xiao, X., Ma, Z., & Wang, J. (2019). Bacillus subtilis STU6 ameliorates iron deficiency in tomato by enhancement of polyamine-mediated iron remobilization. Journal of Agricultural and Food Chemistry, 67(1), 320–330. https://doi.org/10.1021/acs.jafc.8b05851
  • Zhou, W.-Y., Zheng, H., Du, X.-L., & Yang, J.-L. (2016). Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients. Cancer Biology & Medicine, 13(2), 260–268. https://doi.org/10.20892/j.issn.2095-3941.2015.0102
  • Zhou, Y., Wu, C., Lu, G., Hu, Z., Chen, Q., & Du, X. (2020). FGF/FGFR signaling pathway involved resistance in various cancer types. Journal of Cancer, 11(8), 2000–2007. https://doi.org/10.7150/jca.40531
  • Životić, M., Tampe, B., Müller, G., Müller, C., Lipkovski, A., Xu, X., Nyamsuren, G., Zeisberg, M., & Marković-Lipkovski, J. (2018). Modulation of NCAM/FGFR1 signaling suppresses EMT program in human proximal tubular epithelial cells. PLoS One. 13(11), e0206786. https://doi.org/10.1371/journal.pone.0206786
  • Zou, L., Cao, S., Kang, N., Huebert, R. C., & Shah, V. H. (2012). Fibronectin induces endothelial cell migration through β1 integrin and Src-dependent phosphorylation of fibroblast growth factor receptor-1 at tyrosines 653/654 and 766. The Journal of Biological Chemistry, 287(10), 7190–7202. https://doi.org/10.1074/jbc.M111.304972

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.