342
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Repurposing immune boosting and anti-viral efficacy of Parkia bioactive entities as multi-target directed therapeutic approach for SARS-CoV-2: exploration of lead drugs by drug likeness, molecular docking and molecular dynamics simulation methods

ORCID Icon, , , , , , , , , , , , , & ORCID Icon show all
Pages 43-81 | Received 09 Dec 2022, Accepted 10 Mar 2023, Published online: 05 Apr 2023

References

  • Abdal Dayem, A., Choi, H. Y., Kim, Y. B., & Cho, S. G. (2015). Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One, 10(3), e0121610. https://doi.org/10.1371/journal.pone.0121610
  • Abdel-Moneim, A. S., & Abdelwhab, E. M. (2020). Evidence for SARS-CoV-2 Infection of animal hosts. Pathogens, 9(7), 529. https://doi.org/10.3390/pathogens9070529
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multilevel parallelism from laptops to supercomputers. SoftwareX, 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adem, Ş., Eyupoglu, V., Sarfraz, I., Rasul, A., Zahoor, A. F., Ali, M., Abdalla, M., Ibrahim, I. M., & Elfiky, A. A. (2021). Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 85, 153310. https://doi.org/10.1016/j.phymed.2020.153310
  • Agrawal, P. K., Agrawal, C., & Blunden, G. (2021). Rutin: A potential antiviral for repurposing as a SARS-CoV-2 main protease (Mpro) inhibitor. Natural Product Communications, 16(4). https://doi.org/10.1177/1934578X21991723
  • Aherfi, S., Pradines, B., Devaux, C., Honore, S., Colson, P., Scola, B., & Raoult, D. (2021). Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. Future Microbiology, 16, 1341–1370. https://doi.org/10.2217/fmb-2021-0019
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230. https://doi.org/10.3389/fchem.2021.661230
  • Alqahtani, A. S., Herqash, R. N., Noman, O. M., Nasr, F. A., Alyhya, N., Anazi, S. H., Farooq, M., & Ullah, R. (2020). In vitro antioxidant, cytotoxic activities, and phenolic profile of Senecio glaucus from Saudi Arabia. Evidence-Based Complementary and Alternative Medicine: eCAM, 2020, 8875430. https://doi.org/10.1155/2020/8875430
  • Alzain, A. A., Elbadwi, F. A., & Alsamani, F. O. (2022). Discovery of novel TMPRSS2 inhibitors for COVID-19 using in silico fragment-based drug design, molecular docking, molecular dynamics, and quantum mechanics studies. Informatics in Medicine Unlocked, 29, 100870. https://doi.org/10.1016/j.imu.2022.100870
  • Anand, A. V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., Parithathvi, A., Arun, M., Senthilkumar, N., Velayuthaprabhu, S., Saradhadevi, M., Al-Dhabi, N. A., Arasu, M. V., Yatoo, M. I., Tiwari, R., & Dhama, K. (2021). Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules, 26(6), 1775. https://doi.org/10.3390/molecules26061775
  • Andrusier, N., Nussinov, R., & Wolfson, H. J. (2007). FireDock: Fast interaction refinement in molecular docking. Proteins: Structure, Function, and Bioinformatics, 69(1), 139–159. https://doi.org/10.1002/prot.21495
  • Atolani, O., Oguntoye, H., Areh, E. T., Adeyemi, O. S., & Kambizi, L. (2019). Chemical composition, anti-toxoplasma, cytotoxicity, antioxidant, and anti-inflammatory potentials of Cola gigantea seed oil. Pharmaceutical Biology, 57(1), 154–160. https://doi.org/10.1080/13880209.2019.1577468
  • Azeem, M., Mustafa, G., & Mahrosh, H. S. (2022). Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies. International Journal of Immunopathology and Pharmacology, 36, 3946320221142793. https://doi.org/10.1177/03946320221142793
  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Báez-Santos, Y. M., St John, S. E., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
  • Bai, J., Zhang, Y., Tang, C., Hou, Y., Ai, X., Chen, X., Zhang, Y., Wang, X., & Meng, X. (2021). Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 133, 110985. https://doi.org/10.1016/j.biopha.2020.110985
  • Bailly, F., & Cotelle, P. (2005). Anti-HIV activities of natural antioxidant caffeic acid derivatives: Toward an antiviral supplementation diet. Current Medicinal Chemistry, 12(15), 1811–1818. https://doi.org/10.2174/0929867054367239
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bernatova, I., & Liskova, S. (2021). Mechanisms modified by (-)-epicatechin and taxifolin relevant for the treatment of hypertension and viral infection: Knowledge from preclinical studies. Antioxidants, 10(3), 467.https://doi.org/10.3390/antiox10030467
  • Biovia, D. S. (2015). Discovery studio modeling environment dassault syst. Release, San Diego, 4. https://discover.3ds.com/discovery-studio-visualizer-download
  • Bosch, B. J., van der Zee, R., de Haan, C. A., & Rottier, P. J. (2003). The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. Journal of Virology, 77(16), 8801–8811. https://doi.org/10.1128/jvi.77.16.8801-8811.2003
  • Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 3(3), 435–444. https://doi.org/10.1002/cmdc.200700139
  • Brieudes, V., Angelis, A., Vougogiannopoulou, K., Pratsinis, H., Kletsas, D., Mitakou, S., Halabalaki, M., & Skaltsounis, L. A. (2016). Phytochemical analysis and antioxidant potential of the phytonutrient-rich decoction of cichorium spinosum and C. intybus. Planta Medica, 82(11–12), 1070–1078. https://doi.org/10.1055/s-0042-107472
  • Chitongo, R., Obasa, A. E., Mikasi, S. G., Jacobs, G. B., & Cloete, R. (2020). Molecular dynamic simulations to investigate the structural impact of known drug resistance mutations on HIV-1C Integrase-Dolutegravir binding. PLoS One, 15(5), e0223464. https://doi.org/10.1371/journal.pone.0223464
  • Cho, B. O., Yin, H. H., Park, S. H., Byun, E. B., Ha, H. Y., & Jang, S. I. (2016). Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Bioscience, Biotechnology, and Biochemistry, 80(8), 1520–1530. https://doi.org/10.1080/09168451.2016.1171697
  • Daina, A., & Zoete, V. (2016). A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • DeLano, W. (2002). The PyMOL Molecular Graphics System, San Carlos, CA, USA.
  • de Oliveira Silva, E., & Batista, R. (2017). Ferulic acid and naturally occurring compounds bearing a feruloyl moiety: A review on their structures, occurrence, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 16(4), 580–616. https://doi.org/10.1111/1541-4337.12266
  • Dey, D., Paul, P. K., Al Azad, S., Al Mazid, M. F., Khan, A. M., Sharif, M. A., & Rahman, M. H. (2021). Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: An in silico approach of targeted drug designing. Journal of Advanced Veterinary and Animal Research, 8(1), 1–35. https://doi.org/10.5455/javar.2021.h481
  • Doniach, S., & Eastman, P. (1999). Protein dynamics simulations from nanoseconds to micro seconds. Current Opinion in Structural Biology, 9(2), 157–163. https://doi.org/10.1016/S0959-440X(99)80022-0
  • Dubey, K. D., Tiwari, R. K., & Ojha, R. P. (2013). Recent advances in protein-ligand interactions: Molecular dynamics simulations and binding free energy. Current Computer Aided-Drug Design, 9(4), 518–531. https://doi.org/10.2174/15734099113096660036
  • Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient unbound docking of rigid molecules. In: R. Guigo & D. Gusfield (Eds.), Workshop on algorithms in bioinformatics (Vol. 2452, pp. 185–200). Springer Verlag. https://doi.org/10.1007/3-540-45784-4_14
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Eckerle, L. D., Becker, M. M., Halpin, R. A., Li, K., Venter, E., Lu, X., Scherbakova, S., Graham, R. L., Baric, R. S., Stockwell, T. B., Spiro, D. J., & Denison, M. R. (2010). Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathogens, 6(5), e1000896. https://doi.org/10.1371/journal.ppat.1000896
  • Egbuna, C., Patrick-Iwuanyanwu, K. C., Onyeike, E. N., Khan, J., & Alshehri, B. (2021). FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: In silico studies. Journal of Biomolecular Structure & Dynamics, 40(22), 12248–12259. https://doi.org/10.1080/07391102.2021.1969286
  • Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1(1), 8. https://doi.org/10.1186/1758-2946-1-8
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Fadlalla, M., Ahmed, M., Ali, M., Elshiekh, A. A., & Yousef, B. A. (2022). Molecular docking as a potential approach in repurposing drugs against COVID-19: A systematic review and novel pharmacophore models. Current Pharmacology Reports, 8(3), 212–226. https://doi.org/10.1007/s40495-022-00285-w
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology (Clifton, N.J.), 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
  • Fuhrmann, J., Rurainski, A., Lenhof, H. P., & Neumann, D. (2010). A new Lamarckian genetic algorithm for flexible ligand-receptor docking. Journal of Computational Chemistry, 31(9), 1911–1918. https://doi.org/10.1002/jcc.21478
  • Fujisawa, S., Ishihara, M., Murakami, Y., Atsumi, T., Kadoma, Y., & Yokoe, I. (2007). Predicting the biological activities of 2-methoxyphenol antioxidants: Effects of dimers. In vivo, 21(2), 181–188.
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. Journal of Biomolecular Structure & Dynamics, 39(17), 6747–6760. https://doi.org/10.1080/07391102.2020.1802347
  • Granja, A., Frias, I., Neves, A. R., Pinheiro, M., & Reis, S. (2017). Therapeutic potential of epigallocatechin gallate nanodelivery systems. BioMed Research International, 2017, 5813793. https://doi.org/10.1155/2017/5813793
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2018). ADMET-score - A comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/C8MD00472B
  • Habsah, M., Ali, A., Lajis, N., Sukari, M., Yap, Y., Kikuzaki, H., & Nakatani, N. (2005). Antitumour-promoting and cytotoxic constituents of etlingera elatior. The Malaysian Journal of Medical Sciences, 12(1), 6–12.
  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Palaeontological statistics software package for education and data analysis (version 1.86b). Palaeontology Electron, 4(1), 9.
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Huang, C. Y., Chang, Y. J., Wei, P. L., Hung, C. S., & Wang, W. (2021). Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells. PLoS One, 16(3), e0248521. https://doi.org/10.1371/journal.pone.0248521
  • Huang, S. Y., & Zou, X. (2008). An iterative knowledge-based scoring function for protein-protein recognition. Proteins, 72(2), 557–579. https://doi.org/10.1002/prot.21949
  • Huang, S. Y., & Zou, X. (2014). A knowledge-based scoring function for protein-RNA inte-ractionns derived from a statistical mechanics-based iterative method. Nucleic Acids Research, 42(7), e55. https://doi.org/10.1093/nar/gku077
  • Huang, W. C., Tsai, T. H., Chuang, L. T., Li, Y. Y., Zouboulis, C. C., & Tsai, P. J. (2014). Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: A comparative study with lauric acid. Journal of Dermatological Science, 73(3), 232–240. https://doi.org/10.1016/j.jdermsci.2013.10.010
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–28. https://doi.org/10.1016/0263-7855(96)00018
  • Ibrahim, N., & Naina Mohamed, I. (2021). Interdependence of anti-Inflammatory and antioxidant properties of squalene-implication for cardiovascular health. Life, 11(2), 103. https://doi.org/10.3390/life11020103
  • Ingólfsson, H. I., Koeppe, R. E., II, & Andersen, O. S. (2011). Effects of green tea catechins on gramicidin channel function and inferred changes in bilayer properties. FEBS Letters, 585(19), 3101–3105. https://doi.org/10.1016/j.febslet.2011.08.040
  • Intisar, A., Zhang, L., Luo, H., Kiazolu, J. B., Zhang, R., & Zhang, W. (2012). Anticancer constituents and cytotoxic activity of methanol-water extract of Polygonum bistorta L. African Journal of Traditional, Complementary, and Alternative Medicines, 10(1), 53–59. https://doi.org/10.4314/ajtcam.v10i1.9
  • Ivanov, K. A., Thiel, V., Dobbe, J. C., van der Meer, Y., Snijder, E. J., & Ziebuhr, J. (2004). Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. Journal of Virology, 78(11), 5619–5632. https://doi.org/10.1128/JVI.78.11.5619-5632.2004
  • Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews. Molecular Cell Biology, 23(1), 3–20. https://doi.org/10.1038/s41580-021-00418-x
  • Jasso-Miranda, C., Herrera-Camacho, I., Flores-Mendoza, L. K., Dominguez, F., Vallejo-Ruiz, V., Sanchez-Burgos, G. G., Pando-Robles, V., Santos-Lopez, G., & Reyes-Leyva, J. (2019). Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infection and Drug Resistance, 12, 1833–1852. https://doi.org/10.2147/IDR.S210890
  • Jia, C. Y., Li, J. Y., Hao, G. F., & Yang, G. F. (2020). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258. https://doi.org/10.1016/j.drudis.2019.10.014
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Joshi, B., Panda, S. K., Jouneghani, R. S., Liu, M., Parajuli, N., Leyssen, P., Neyts, J., & Luyten, W. (2020). Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence. Evidence-Based Complementary and Alternative Medicine: eCAM, 2020, 1043471. https://doi.org/10.1155/2020/1043471
  • Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2021). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure & Dynamics, 39(9), 3099–3114. https://doi.org/10.1080/07391102.2020.1760137
  • Joshi, T., Sharma, P., Mathpal, S., Joshi, T., Maiti, P., Nand, M., Pande, V., & Chandra, S. (2022). Computational investigation of drug bank compounds against 3C-like protease (3CLpro) of SARS-CoV-2 using deep learning and molecular dynamics simulation. Molecular Diversity, 26(4), 2243–2256. https://doi.org/10.1007/s11030-021-10330-3
  • Kamisah, Y., Othman, F., Qodriyah, H. M., & Jaarin, K. (2013). Parkia speciosa Hassk.: A potential phytomedicine. Evidence-Based Complementary and Alternative Medicine: eCAM, 2013, 709028. https://doi.org/10.1155/2013/709028
  • Kangsamaksin, T., Chaithongyot, S., Wootthichairangsan, C., Hanchaina, R., Tangshewinsiri Kul, C., & Svasti, J. (2017). Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PLoS One, 12(12), e0189628. https://doi.org/10.1371/jounal.pone.0189628
  • Khasamwala, R. H., Ranjani, S., Nivetha, S. S., & Hemalatha, S. (2022). COVID-19: An in silico analysis on potential therapeutic uses of Trikadu as immune system boosters. Applied Biochemistry and Biotechnology, 194(1), 291–301. https://doi.org/10.1007/s12010-021-03793-5
  • Kingsford, C. L., Chazelle, B., & Singh, M. (2005). Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics, 21(7), 1028–1036. https://doi.org/10.1093/bioinformatics/bti144
  • Kirtipal, N., Bharadwaj, S., & Kang, S. G. (2020). From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infection, Genetics and Evolution, 85, 104502. https://doi.org/10.1016/j.meegid.2020.104502
  • Kolodziejczyk-Czepas, J., Pasiński, B., Ponczek, M. B., Moniuszko-Szajwaj, B., Kowalczyk, M., Pecio, Ł., Nowak, P., & Stochmal, A. (2018). Bufadienolides from Kalanchoe daigremontiana modulate the enzymatic activity of plasmin - In vitro and in silico analyses. International Journal of Biological Macromolecules, 120(Pt B), 1591–1600. https://doi.org/10.1016/j.ijbiomac.2018.09.143
  • Komatsu, T. S., Okimoto, N., Koyama, Y. M., Hirano, Y., Morimoto, G., Ohno, Y., & Taiji, M. (2020). Drug binding dynamics of the dimeric SARS-CoV-2 main protease, determined by molecular dynamics simulation. Scientific Reports, 10(1), 16986. https://doi.org/10.1038/s41598-020-74099-5
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kwofie, S. K., Broni, E., Asiedu, S. O., Kwarko, G. B., Dankwa, B., Enninful, K. S., Tiburu, E. K., & Wilson, M. D. (2021). Cheminformatics-based identification of potential novel anti-SARS-CoV-2 natural compounds of African origin. Molecules, 26(2), 406. https://doi.org/10.3390/molecules26020406
  • Lalani, S., & Poh, C. L. (2020). Correction: Lalani, S. and Poh, C.L. Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses, 12(7), 712. https://doi.org/10.3390/v12070712
  • Latos-Brozio, M., Masek, A., & Piotrowska, M. (2020). Thermally Stable and antimicrobial active poly(catechin) obtained by reaction with a cross-linking agent. Biomolecules, 11(1), 50. https://doi.org/10.3390/biom11010050
  • LeCher, J. C., Diep, N., Krug, P. W., & Hilliard, J. K. (2019). Genistein has antiviral activity against herpes B virus and acts synergistically with antiviral treatments to reduce effective dose. Viruses, 11(6), 499. https://doi.org/10.3390/v11060499
  • Lee, J. S., Hong, D. Y., Kim, E. S., & Lee, H. G. (2017). Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids and Surfaces, B, Biointerfaces, 154, 171–177. https://doi.org/10.1016/j.colsurfb.2017.03.004
  • Lee, Y. Y., Lee, E. J., Park, J. S., Jang, S. E., Kim, D. H., & Kim, H. S. (2016). Anti-inflammatory and antioxidant mechanism of tangeretin in activated microglia. Journal of Neuroimmune Pharmacology, 11(2), 294–305. https://doi.org/10.1007/s11481-016-9657-x
  • Li, J., Huang, H., Zhou, W., Feng, M., & Zhou, P. (2008). Anti-hepatitis B virus activities of Geranium carolinianum L. extracts and identification of the active components. Biological & Pharmaceutical Bulletin, 31(4), 743–747. https://doi.org/10.1248/bpb.31.743
  • Lin, S. C., Chen, M. C., Li, S., Lin, C. C., & Wang, T. T. (2017). Antiviral activity of nobiletin against chikungunya virus in vitro. Antiviral Therapy, 22(8), 689–697. https://doi.org/10.3851/IMP3167
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Lobanov, M. Iu., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706.
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Maatouk, M., Elgueder, D., Mustapha, N., Chaaban, H., Bzéouich, I. M., Loannou, I., Kilani, S., Ghoul, M., Ghedira, K., & Chekir-Ghedira, L. (2016). Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity. Cell Stress & Chaperones, 21(6), 1101–1109. https://doi.org/10.1007/s12192-016-0734-0
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Malekmohammad, K., & Rafieian-Kopaei, M. (2021). Mechanistic aspects of medicinal plants and secondary metabolites against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current Pharmaceutical Design, 27(38), 3996–4007. https://doi.org/10.2174/1381612827666210705160130
  • Mamidala, E., Davella, R., Praveen Kumar, M., Swamy, S., Abhiav, M., Ali Kaimkhani, Z., Al-Ghanim, K. A., & Mahboob, S. (2022). In silico prediction of mozenavir as a potential drug for SARS-CoV-2 infection via binding multiple drug targets. Saudi Journal of Biological Sciences, 29(2), 840–847. https://doi.org/10.1016/j.sjbs.2021.10.023
  • Mani, J. S., Johnson, J. B., Hosking, H., Ashwath, N., Walsh, K. B., Neilsen, P. M., Broszczak, D. A., & Naiker, M. (2021). Antioxidative and therapeutic potential of selected Australian plants: A review. Journal of Ethnopharmacology, 268, 113580. https://doi.org/10.1016/j.jep.2020.113580
  • Marčetić, M., Božić, D., Milenković, M., Malešević, N., Radulović, S., & Kovačević, N. (2013). Antimicrobial, antioxidant and anti-inflammatory activity of young shoots of the smoke tree. Cotinus Coggygria Scop. Phytotherapy Research, 27(11), 1658–1663. https://doi.org/10.1002/ptr.4919
  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170. https://doi.org/10.1021/jm0492002
  • Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., & Wolfson, H. J. (2008). FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Research, 36(Web Server issue), W229–W232. https://doi.org/10.1093/nar/gkn186
  • Menegazzi, M., Campagnari, R., Bertoldi, M., Crupi, R., Di Paola, R., & Cuzzocrea, S. (2020). Protective effect of epigallocatechin-3-gallate (EGCG) in Diseases with uncontrolled immune activation: Could such a scenario be helpful to counteract COVID-19? International Journal of Molecular Sciences, 21(14), 5171. https://doi.org/10.3390/ijms21145171
  • Mielech, A. M., Chen, Y., Mesecar, A. D., & Baker, S. C. (2014). Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Research, 194, 184–190. https://doi.org/10.1016/j.virusres.2014.01.025
  • Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules, 15(12), 9252–9287. https://doi.org/10.3390/molecules15129252
  • Mohd Azizi, C. Y., Salman, Z., NikNorulain, N., & Mohd Omar, A. (2021). Extraction and identification of compounds from Parkia speciosa seeds by supercritical carbon dioxide. Journal of Chemical Natural Resources, 2, 153–163.
  • Molinspiration cheminformatics server (free web services). (2022). Slovensky, Grob., Slovakia. Retrieved September 5, http://www.molinspiration.com
  • Moreno-Anzúrez, N. E., Marquina, S., Alvarez, L., Zamilpa, A., Castillo-España, P., Perea-Arango, I., Torres, P. N., Herrera-Ruiz, M., Díaz García, E. R., García, J. T., & Arellano-García, J. (2017). A cytotoxic and anti-inflammatory campesterol derivative from genetically transformed hairy roots of Lopezia racemosa Cav. (Onagraceae). Molecules, 22(1), 118. https://doi.org/10.3390/molecules22010118
  • Mrityunjaya, M., Pavithra, V., Neelam, R., Janhavi, P., Halami, P. M., & Ravindra, P. V. (2020). Immune-Boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Frontiers in Immunology, 11, 570122. https://doi.org/10.3389/fimmu.2020.570122
  • Murali, K. S., Sivasubramanian, S., Vincent, S., Murugan, S. B., Giridaran, B., Dinesh, S., Gunasekaran, P., Krishnasamy, K., & Sathishkumar, R. (2015). Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pacific Journal of Tropical Medicine, 8(5), 352–358. https://doi.org/10.1016/S1995-7645(14)60343-6
  • Narayanan, A., Narwal, M., Majowicz, S. A., Varricchio, C., Toner, S. A., Ballatore, C., Brancale, A., Murakami, K. S., & Jose, J. (2022). Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Communications Biology, 5(1), 169. https://doi.org/10.1038/s42003-022-03090-9
  • Nayak, S. P., Lone, R. A., Fakhrah, S., Chauhan, A., Sarvendra, K., & Mohanty, C. S. (2022). Mainstreaming underutilized legumes for providing nutritional security. In R. Bhat (Ed.), Future foods, global trends, opportunities, and sustainability challenges. Academic Press. https://doi.org/10.1016/B978-0-323-91001-9.00023-2
  • Nayaka, H. B., Londonkar, R. L., Umesh, M. K., & Tukappa, A. (2014). Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. International Journal of Bacteriology, 2014, 175851. https://doi.org/10.1155/2014/175851
  • Nicholas, D. A., Zhang, K., Hung, C., Glasgow, S., Aruni, A. W., Unternaehrer, J., Payne, K. J., Langridge, W. H. R., & De Leon, M. (2017). Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One. 12(5), e0176793. https://doi.org/10.1371/journal.pone.0176793
  • Odounharo, O. G. R., Gnansounou, S. C., Salako, K. V., Idohou, R., Mensah, G. A., Kakaï, R. G., & Assogbadjo, A. E. (2022). Medicinal use patterns of Parkia biglobosa (Jacq.) Benth. and Vitellaria paradoxa (Gaertn. F), two important traditional agroforestry species in Benin, West-Africa. Advances in Traditional Medicine, 22, 531–545. https://doi.org/10.1007/s13596-021-00583-6
  • Oliveira, C., Cagide, F., Teixeira, J., Amorim, R., Sequeira, L., Mesiti, F., Silva, T., Garrido, J., Remião, F., Vilar, S., Uriarte, E., Oliveira, P. J., & Borges, F. (2018). Hydroxybenzoic acid derivatives as dual-target ligands: Mitochondriotropic antioxidants and cholinesterase inhibitors. Frontiers in Chemistry, 6, 126. https://doi.org/10.3389/fchem.2018.00126
  • Opo, F. A. D. M., Rahman, M. M., Ahammad, F., Ahmed, I., Bhuiyan, M. A., & Asiri, A. M. (2021). Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific Reports, 11(1), 4049. https://doi.org/10.1038/s41598-021-83626-x
  • Ozçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 49(4), 396–402. https://doi.org/10.3109/13880209.2010.519390
  • Parihar, A., Sonia, Z. F., Akter, F., Ali, M. A., Hakim, F. T., & Hossain, M. S. (2022). Phytochemicals-based targeting RdRp and main protease of SARS-CoV-2 using docking and steered molecular dynamic simulation: A promising therapeutic approach for Tackling COVID-19. Computers in Biology and Medicine, 145, 105468. https://doi.org/10.1016/j.compbiomed.2022.105468
  • Parvathaneni, V., Kulkarni, N. S., Muth, A., & Gupta, V. (2019). Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discovery Today. 24(10), 2076–2085. https://doi.org/10.1016/j.drudis.2019.06.014
  • Peng, Y., Shi, Y., Zhang, H., Mine, Y., & Tsao, R. (2017). Anti-inflammatory and anti-oxidative activities of daidzein and its sulfonic acid ester derivatives. Journal of Functional Foods, 35, 635–640. https://doi.org/10.1016/j.jff.2017.06.027
  • Petrova, N. V., & Wu, C. H. (2006). Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. BMC Bioinformatics, 7, 312. https://doi.org/10.1186/1471-2105-7-312
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Potts, R. O., & Guy, R. H. (1992). Predicting skin permeability. Pharmaceutical Research, 9(5), 663–669. https://doi.org/10.1023/a:1015810312465
  • Qayed, W. S., Ferreira, R. S., & Silva, J. R. A. (2022). In silico study towards repositioning of FDA-approved drug candidates for anticoronaviral therapy: Molecular docking, molecular dynamics and binding free energy calculations. Molecules, 27(18), 5988. https://doi.org/10.3390/molecules27185988
  • Ralte, L., Khiangte, L., Thangjam, N. M., Kumar, A., & Singh, Y. T. (2022). GC-MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Scientific Reports, 12(1), 3395. https://doi.org/10.1038/s41598-022-07320-2
  • Ruwizhi, N., & Aderibigbe, B. A. (2020). Cinnamic acid derivatives and their biological efficacy. International Journal of Molecular Sciences, 21(16), 5712. https://doi.org/10.3390/ijms21165712
  • Saleem, M. (2009). Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Letters, 285(2), 109–115. https://doi.org/10.1016/j.canlet.2009.04.033
  • Saleh, M. S. M., Jalil, J., Zainalabidin, S., Asmadi, A. Y., Mustafa, N. H., & Kamisah, Y. (2021). Genus Parkia: Phytochemical, medicinal uses, and pharmacological properties. International Journal of Molecular Sciences, 22(2), 618. https://doi.org/10.3390/ijms.22020618
  • Salehi, B., Machin, L., Monzote, L., Sharifi-Rad, J., Ezzat, S. M., Salem, M. A., Merghany, R. M., El Mahdy, N. M., Kılıç, C. S., Sytar, O., Sharifi-Rad, M., Sharopov, F., Martins, N., Martorell, M., & Cho, W. C. (2020). Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega. 5(20), 11849–11872. https://doi.org/10.1021/acsomega.0c01818
  • Schmidtke, P., Le Guilloux, V., Maupetit, J., & Tufféry, P. (2010). fpocket: Online tools for protein ensemble pocket detection and tracking. Nucleic Acids Research, 38(Web Server issue), W582–W589. https://doi.org/10.1093/nar/gkq383
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–W367. https://doi.org/10.1093/nar/gki481
  • Schrödinger, L., & DeLano, W. (2020). PyMOL Internet (2020). http://www.pymol.org/pymol
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2022). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - A molecular docking study. Journal of Biomolecular Structure & Dynamics, 40(1), 190–203. https://doi.org/10.1080/07391102.2020.1810778
  • Singh, T. U., Parida, S., Lingaraju, M. C., Kesavan, M., Kumar, D., & Singh, R. K. (2020). Drug repurposing approach to fight COVID-19. Pharmacological Reports, 72(6), 1479–1508. https://doi.org/10.1007/s43440-020-00155-6
  • Smilgies, D. M., & Folta-Stogniew, E. (2015). Molecular weight-gyration radius relation of globular proteins: A comparison of light scattering, small-angle X-ray scattering and structure-based data. Journal of Applied Crystallography, 48(Pt 5), 1604–1606. https://doi.org/10.1107/S1600576715015551
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367
  • Stefani, T., Romo-Mancillas, A., Carrizales-Castillo, J. J. J., Arredondo-Espinoza, E., Ramírez-Estrada, K., Alcantar-Rosales, V. M., González-Maya, L., Sánchez-Carranza, J. N., Balderas-Renterías, I., & Camacho-Corona, M. D. R. (2021). Cytotoxic Fractions from Hechtia glomerata Extracts and p-Coumaric Acid as MAPK Inhibitors. Molecules, 26(4), 1096. https://doi.org/10.3390/molecules26041096
  • Sun, M., Ye, Y., Xiao, L., Rahman, K., Xia, W., & Zhang, H. (2016). Daidzein: A review of pharmacological effects. African Journal of Traditional, Complementary and Alternative Medicines, 13, 117–132.
  • Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
  • Thu, Z. M., Aye, M. M., Aung, H. T., Sein, M. M., & Vidari, G. (2018). A review of common medicinal plants in Chin State, Myanmar. Natural Product Communications, 13(11), 1934578X1801301)
  • Trezza, A., Mugnaini, C., Corelli, F., Santucci, A., & Spiga, O. (2022). In silico multi-target approach revealed potential lead compounds as scaffold for the synthesis of chemical analogues targeting SARS-CoV-2. Biology, 11(3), 465. https://doi.org/10.3390/biology11030465
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tu, K. C., Tobias, D. J., & Klein, M. L. (1995). Constant-pressure and temperature molecular-dynamics simulations of crystals of the lecithin fragments–glycerolphophorylcholine and dilauroylglycerol. The Journal of Physical Chemistry, 99, 10035–10042. https://doi.org/10.1021/j100024a053
  • Vazquez-Calvo, Á., Jiménez de Oya, N., Martín-Acebes, M. A., Garcia-Moruno, E., & Saiz, J. C. (2017). Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus. Frontiers in Microbiology, 8, 1314. https://doi.org/10.3389/fmicb.2017.01314
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Verma, N., Amresh, G., Sahu, P. K., Mishra, N., Rao, C., & Singh, A. P. (2013). Pharmacological evaluation of hyperin for antihyperglycemic activity and effect on lipid profile in diabetic rats. Indian Journal of Experimental Biology, 51(1), 65–72.
  • Wang, J., Fang, X., Ge, L., Cao, F., Zhao, L., Wang, Z., & Xiao, W. (2018). Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One, 13(5), e0197563. https://doi.org/10.1371/journal.pone.0197563
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Washio, T., Sugiura, S., Kanada, R., Okada, J. I., & Hisada, T. (2018). Coupling Langevin dynamics with continuum mechanics: Exposing the role of sarcomere stretch activation mechanisms to cardiac function. Frontiers in Physiology, 9, 333. https://doi.org/10.3389/fphys.2018.00333
  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology (Clifton, N.J.), 112, 531–552. https://doi.org/10.1385/1-59259-584-7:531
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020a). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020b). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xia, X. (2021). Domains and functions of spike protein in SARS-CoV-2 in the context of vaccine design. Viruses, 13(1), 109. https://doi.org/10.3390/v13010109
  • Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S. G., & Ding, J. (2003). Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design. Nucleic Acids Research, 31(24), 7117–7130. https://doi.org/10.1093/nar/gkg916
  • Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A., & Handu, S. (2021). Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 10(4), 821. https://doi.org/10.3390/cells10040821
  • Yan, Y., & Huang, S. Y. (2020). Modeling protein-protein or protein-DNA/RNA complexes using the HDOCK webserver. Methods in Molecular Biology, 2165, 217–229. https://doi.org/10.1007/978-1-0716-0708-4_1
  • Yan, Y., Wen, Z., Wang, X., & Huang, S. Y. (2017a). Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking. Proteins, 85(3), 497–512. https://doi.org/10.1002/prot.25234
  • Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017b). HDOCK: A web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365–W373. https://doi.org/10.1093/nar/gkx407
  • Yao, Q., Lin, M. T., Lan, Q. H., Huang, Z. W., Zheng, Y. W., Jiang, X., Zhu, Y. D., Kou, L., Xu, H. L., & Zhao, Y. Z. (2020). In vitro and in vivo evaluation of didymin cyclodextrin inclusion complexes: characterization and chemosensitization activity. Drug Delivery, 27(1), 54–65. https://doi.org/10.1080/10717544.2019.1704941
  • Yin, W., Mao, C., Luan, X., Shen, D. D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. C., Tian, G., Jiang, H. W., Tao, S. C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., Zhang, S., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560
  • Yu, Z., Kan, R., Ji, H., Wu, S., Zhao, W., Shuian, D., Liu, J., & Li, J. (2021). Identification of tuna protein-derived peptides as potent SARS-CoV-2 inhibitors via molecular docking and molecular dynamic simulation. Food Chemistry, 342, 128366. https://doi.org/10.1016/j.foodchem.2020.128366
  • Zhang, C., Vasmatzis, G., Cornette, J. L., & DeLisi, C. (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. Journal of Molecular Biology, 267(3), 707–726. https://doi.org/10.1006/jmbi.1996.0859
  • Zhang, D., Chen, C. F., Zhao, B. B., Gong, L. L., Jin, W. J., Liu, J. J., Wang, J. F., Wang, T. T., Yuan, X. H., & He, Y. W. (2013). A novel antibody humanization method based on epitopes scanning and molecular dynamics simulation. PLoS One, 8(11), e80636. https://doi.org/10.1371/journal.pone.0080636
  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zidan, A. S. A., Ibrahim, A. B. M., Aly, A. A. M., Mosbah, H. K., Mayer, P., & Saber, S. H. (2023). Synthesis, Solid State Structure, and Cytotoxic Activity of a Complex Dimer of Yttrium with Anthranilic Acid against Cancer Cells. Biological Trace Element Research. https://doi.org/10.1007/s12011-022-03545-4
  • Ziebuhr, J., Snijder, E. J., & Gorbalenya, A. E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. The Journal of General Virology, 81(Pt 4), 853–879. https://doi.org/10.1099/0022-1317-81-4-853
  • Zígolo, M. A., Goytia, M. R., Poma, H. R., Rajal, V. B., & Irazusta, V. P. (2021). Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools. The Science of the Total Environment, 781, 146400. https://doi.org/10.1016/j.scitotenv.2021.146400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.