211
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In silico modeling revealed phytomolecules derived from Cymbopogon citratus (DC.) leaf extract as promising candidates for malaria therapy

ORCID Icon, , , , ORCID Icon, , , , , , , , , , & show all
Pages 101-118 | Received 02 Jan 2023, Accepted 10 Mar 2023, Published online: 28 Mar 2023

References

  • Achary, P. G. (2020). Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design: A review. Mini Reviews in Medicinal Chemistry, 20(14), 1375–1388. https://doi.org/10.2174/1389557520666200429102334
  • Adams, Y., Olsen, R. W., Bengtsson, A., Dalgaard, N., Zdioruk, M., Satpathi, S., Behera, P. K., Sahu, P. K., Lawler, S. E., Qvortrup, K., & Wassmer, S. C. (2021). Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood–brain barrier in cerebral malaria. Journal of Experimental Medicine, 218(3), e20201266. https://doi.org/10.1084/jem.20201266
  • Adeyemi, O. S., Akanji, M. A., & Oguntoye, S. A. (2009). Ethanolic leaf extract of Psidium guajava: Phytochemical and trypanocidal activity in rats infected with Trypanosoma brucei brucei. Journal of Medicinal Plants Research, 3(5), 420–423.
  • Akpor, O. B., Ndakotsu, J., Evbuomwan, I. O., Olaolu, T. D., & Osemwegie, O. O. (2021). Bacterial growth inhibition and antioxidant potentials of leaf infusions of (Moringa oleifera), locust beans (Parkia biglobosa) and bitter leaf (Vernonia amygdalina). Scientific African, 14, e01001. https://doi.org/10.1016/j.sciaf.2021.e01001
  • Ambrose, G. O., Enya, J., AbelJack-Soala, T., Fabunmi, B. T., Temidayo, A. K., & Olusola, B. O. (2021). Lipophilic efficiency as an important metric in the design of SARS coronavirus 3C-like proteinase (3CL-pro) inhibitors: Guidepost towards lead selection and optimization in the treatment of COVID-19. Drug Discovery, 15(36), 181–198.
  • Ancsin, J. B., & Kisilevsky, R. (2004). A binding site for highly sulfated heparan sulfate is identified in the N terminus of the circumsporozoite protein: Significance for malarial sporozoite attachment to hepatocytes. Journal of Biological Chemistry, 279(21), 21824–21832. https://doi.org/10.1074/jbc.M401979200
  • Andrews, K. A., Wesche, D., McCarthy, J., Möhrle, J. J., Tarning, J., Phillips, L., Kern, S., & Grasela, T. (2018). Model-informed drug development for malaria therapeutics. Annual Review of Pharmacology and Toxicology, 58, 567. https://doi.org/10.1146/annurev-pharmtox-010715-103429
  • Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A.-C., Khim, N., Kim, S., Duru, V., Bouchier, C., Ma, L., Lim, P., Leang, R., Duong, S., Sreng, S., Suon, S., Chuor, C. M., Bout, D. M., Ménard, S., Rogers, W. O., … Ménard, D. (2014). A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 505(7481), 50–55. https://doi.org/10.1038/nature12876
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Arora, N., Anbalagan, L. C., & Pannu, A. K. (2021). Towards eradication of malaria: Is the WHO’s RTS,S/AS01 vaccination effective enough? Risk Management and Healthcare Policy, 14, 1033. https://doi.org/10.2147/RMHP.S219294
  • Asua, V., Conrad, M. D., Aydemir, O., Duvalsaint, M., Legac, J., Duarte, E., Tumwebaze, P., Chin, D. M., Cooper, R. A., Yeka, A., & Kamya, M. R. (2021). Changing prevalence of potential mediators of aminoquinoline, antifolate, and artemisinin resistance across Uganda. The Journal of Infectious Diseases, 223(6), 985–994. https://doi.org/10.1093/infdis/jiaa687
  • Avoseh, O., Oyedeji, O., Rungqu, P., Nkeh-Chungag, B., & Oyedeji, A. (2015). Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules, 20(5), 7438–7453. https://doi.org/10.3390/molecules20057438
  • Basera, P., Lavania, M., Agnihotri, A., & Lal, B. (2019). Analytical investigation of Cymbopogon citratus and exploiting the potential of developed silver nanoparticle against the dominating species of pathogenic bacteria. Frontiers in Microbiology, 10, 282. https://doi.org/10.3389/fmicb.2019.00282
  • Batiha, G. E. S., Beshbishy, A. M., Alkazmi, L., Adeyemi, O. S., Nadwa, E., Rashwan, E., El-Mleeh, A., & Igarashi, I. (2020). Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts. BMC Complementary Medicine and Therapies, 20(1), 1–14. https://doi.org/10.1186/s12906-020-2848-2
  • Birnbaum, J., Scharf, S., Schmidt, S., Jonscher, E., Hoeijmakers, W. A. M., Flemming, S., Toenhake, C. G., Schmitt, M., Sabitzki, R., Bergmann, B., & Fröhlke, U. (2020). A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science, 367(6473), 51–59. https://doi.org/10.1126/science.aax4735
  • Bohnert, T., & Prakash, C. (2011). ADME profiling in drug discovery and development: An overview. Encyclopedia of Drug Metabolism and Interactions, 1–42. https://doi.org/10.1002/9780470921920.edm021
  • Bull, P. C., & Abdi, A. I. (2016). The role of PfEMP1 as targets of naturally acquired immunity to childhood malaria: Prospects for a vaccine. Parasitology, 143(2), 171–186. https://doi.org/10.1017/S0031182015001274
  • Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., & Tekade, R. K. (2018). Computer-aided prediction of pharmacokinetic (ADMET) properties. In Tekade, R. K. (Ed.), Dosage Form Design Parameters (pp. 731–755). Academic Press.
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
  • Cheng, Q., Chen, Q., Xu, J. H., & Yu, H. L. (2018). A 3D-QSAR assisted activity prediction strategy for expanding substrate spectra of an aldehyde ketone reductase. Molecular Catalysis, 455, 224–232. https://doi.org/10.1016/j.mcat.2018.06.013
  • Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., Dearden, J., Gramatica, P., Martin, Y. C., Todeschini, R., & Consonni, V. (2014). QSAR modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12), 4977–5010. https://doi.org/10.1021/jm4004285
  • Coimbra, J. T., Feghali, R., Ribeiro, R. P., Ramos, M. J., & Fernandes, P. A. (2021). The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Advances, 11(2), 899–908. https://doi.org/10.1039/D0RA09995C
  • Coppi, A., Natarajan, R., Pradel, G., Bennett, B. L., James, E. R., Roggero, M. A., Corradin, G., Persson, C., Tewari, R., & Sinnis, P. (2011). The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. The Journal of Experimental Medicine, 208(2), 341–356. https://doi.org/10.1084/jem.20101488
  • Coppi, A., Tewari, R., Bishop, J. R., Bennett, B. L., Lawrence, R., Esko, J. D., Billker, O., & Sinnis, P. (2007). Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host and Microbe, 2(5), 316–327. https://doi.org/10.1016/j.chom.2007.10.002
  • Cowman, A. F., & Crabb, B. S. (2006). Invasion of red blood cells by malaria parasites. Cell, 124(4), 755–766. https://doi.org/10.1016/j.cell.2006.02.006
  • Danishuddin, Khan, A. U. (2016). Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discovery Today, 21(8), 1291–1302., https://doi.org/10.1016/j.drudis.2016.06.013
  • Delandre, O., Daffe, S. M., Gendrot, M., Diallo, M. N., Madamet, M., Kounta, M. B., Diop, M. N., Bercion, R., Sow, A., Ngom, P. M., Lo, G., Benoit, N., Amalvict, R., Fonta, I., Mosnier, J., Diawara, S., Wade, K. A., Fall, M., Fall, K. B., Fall, B., & Pradines, B. (2020). Absence of association between polymorphisms in the pfcoronin and pfk13 genes and the presence of Plasmodium falciparum parasites after treatment with artemisinin derivatives in Senegal. International Journal of Antimicrobial Agents, 56(6), 106190. https://doi.org/10.1016/j.ijantimicag.2020.106190
  • Derkach, A., Otim, I., Pfeiffer, R. M., Onabajo, O. O., Legason, I. D., Nabalende, H., Ogwang, M. D., Kerchan, P., Talisuna, A. O., Ayers, L. W., Reynolds, S. J., Nkrumah, F., Neequaye, J., Bhatia, K., Theander, T. G., Prokunina-Olsson, L., Turner, L., Goedert, J. J., Lavstsen, T., & Mbulaiteye, S. M. (2019). Associations between IgG reactivity to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens and Burkitt lymphoma in Ghana and Uganda case-control studies. EBioMedicine, 39, 358–368. https://doi.org/10.1016/j.ebiom.2018.12.020
  • Deu, E. (2017). Proteases as antimalarial targets: Strategies for genetic, chemical, and therapeutic validation. The FEBS Journal, 284(16), 2604–2628. https://doi.org/10.1111/febs.14130
  • Doak, B. C., & Kihlberg, J. (2017). Drug discovery beyond the rule of 5 – Opportunities and challenges. Expert Opinion on Drug Discovery, 12(2), 115–119. https://doi.org/10.1080/17460441.2017.1264385
  • Dong, H., Liu, J., Liu, X., Yu, Y., & Cao, S. (2017). Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorganic Chemistry, 75, 106–117. https://doi.org/10.1016/j.bioorg.2017.07.002
  • Ezenyi, I. C., Verma, V., Singh, S., Okhale, S. E., & Adzu, B. (2020). Ethnopharmacology-aided antiplasmodial evaluation of six selected plants used for malaria treatment in Nigeria. Journal of Ethnopharmacology, 254, 112694. https://doi.org/10.1016/j.jep.2020.112694
  • Ganesh, D., Fuehrer, H. P., Starzengrüber, P., Swoboda, P., Khan, W. A., Reismann, J. A., Mueller, M. S., Chiba, P., & Noedl, H. (2012). Antiplasmodial activity of flavonol quercetin and its analogues in Plasmodium falciparum: Evidence from clinical isolates in Bangladesh and standardized parasite clones. Parasitology Research, 110(6), 2289–2295. https://doi.org/10.1007/s00436-011-2763-z
  • Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M.-S., Nene, V., … Barrell, B. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419(6906), 498–511. https://doi.org/10.1038/nature01097
  • Gilson, P. R., Nebl, T., Vukcevic, D., Moritz, R. L., Sargeant, T., Speed, T. P., Schofield, L., & Crabb, B. S. (2006). Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum* S. Molecular & Cellular Proteomics, 5(7), 1286–1299. https://doi.org/10.1074/mcp.M600035-MCP200
  • Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., & Zhang, P. (2019). In silico ADME and toxicity prediction of ceftazidime and its impurities. Frontiers in Pharmacology, 10, 434. https://doi.org/10.3389/fphar.2019.00434
  • Helgren, T. R., Sciotti, R. J., Lee, P., Duffy, S., Avery, V. M., Igbinoba, O., Akoto, M., & Hagen, T. J. (2015). The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs. Bioorganic & Medicinal Chemistry Letters, 25(2), 327–332. https://doi.org/10.1016/j.bmcl.2014.11.039
  • Hviid, L., & Jensen, A. T. (2015). PfEMP1 – A parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis. Advances in Parasitology, 88, 51–84. https://doi.org/10.1016/bs.apar.2015.02.004
  • Jensen, A. R., Adams, Y., & Hviid, L. (2020). Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1‐based vaccines to prevent it. Immunological Reviews, 293(1), 230–252. https://doi.org/10.1111/imr.12807
  • Jones, R. A., Panda, S. S., & Hall, C. D. (2015). Quinine conjugates and quinine analogues as potential antimalarial agents. European Journal of Medicinal Chemistry, 97, 335–355. https://doi.org/10.1016/j.ejmech.2015.02.002
  • Kapisi, J., Kakuru, A., Jagannathan, P., Muhindo, M. K., Natureeba, P., Awori, P., Nakalembe, M., Ssekitoleko, R., Olwoch, P., Ategeka, J., & Nayebare, P. (2017). Relationships between infection with Plasmodium falciparum during pregnancy, measures of placental malaria, and adverse birth outcomes. Malaria Journal, 16(1), 1–11. https://doi.org/10.1186/s12936-017-2040-4
  • Kausar, S., & Falcao, A. O. (2018). An automated framework for QSAR model building. Journal of Cheminformatics, 10(1), 1–23. https://doi.org/10.1186/s13321-017-0256-5
  • Khan, M. T. H. (2010). Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Current Drug Metabolism, 11(4), 285–295. https://doi.org/10.2174/138920010791514306
  • Kostal, J. (2016). Computational chemistry in predictive toxicology: Status quo et quo vadis? In Fishbein, J. C., Heilman, J. M. (Eds.), Advances in Molecular Toxicology (Vol. 10, pp. 139–186). Elsevier.
  • Lennartz, F., Adams, Y., Bengtsson, A., Olsen, R. W., Turner, L., Ndam, N. T., Ecklu-Mensah, G., Moussiliou, A., Ofori, M. F., Gamain, B., Lusingu, J. P., Petersen, J. E. V., Wang, C. W., Nunes-Silva, S., Jespersen, J. S., Lau, C. K. Y., Theander, T. G., Lavstsen, T., Hviid, L., Higgins, M. K., & Jensen, A. T. R. (2017). Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria. Cell Host & Microbe, 21(3), 403–414. https://doi.org/10.1016/j.chom.2017.02.009
  • Li, Q., & Shah, S. (2017). Structure‐based virtual screening BT. In C. H. Wu, C. N. Arighi, K. E. Ross (Eds.), Protein Bioinformatics: From Protein Modifications and Networks to Proteomics (pp.111–124). Springer New York.
  • Lin, C. S., Uboldi, A. D., Epp, C., Bujard, H., Tsuboi, T., Czabotar, P. E., & Cowman, A. F. (2016). Multiple Plasmodium falciparum merozoite surface protein 1 complexes mediate merozoite binding to human erythrocytes. The Journal of Biological Chemistry, 291(14), 7703–7715. https://doi.org/10.1074/jbc.M115.698282
  • Lin, C. S., Uboldi, A. D., Marapana, D., Czabotar, P. E., Epp, C., Bujard, H., Taylor, N. L., Perugini, M. A., Hodder, A. N., & Cowman, A. F. (2014). The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. The Journal of Biological Chemistry, 289(37), 25655–25669. https://doi.org/10.1074/jbc.M114.586495
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Livingstone, M. C., Bitzer, A. A., Giri, A., Luo, K., Sankhala, R. S., Choe, M., Zou, X., Dennison, S. M., Li, Y., Washington, W., & Ngauy, V. (2021). In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-84622-x
  • López-López, E., Naveja, J. J., & Medina-Franco, J. L. (2019). DataWarrior: An evaluation of the open-source drug discovery tool. Expert Opinion on Drug Discovery, 14(4), 335–341. https://doi.org/10.1080/17460441.2019.1581170
  • Madhav, H., & Hoda, N. (2021). An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. European Journal of Medicinal Chemistry, 210, 112955. https://doi.org/10.1016/j.ejmech.2020.112955
  • Mahabeleshwar, G. H., & Kundu, G. C. (2003). Tyrosine kinase p56lck regulates cell motility and nuclear factor κB-mediated secretion of urokinase type plasminogen activator through tyrosine phosphorylation of IκBα following hypoxia/reoxygenation. Journal of Biological Chemistry, 278(52), 52598–52612. https://doi.org/10.1074/jbc.M308941200
  • Maurais, A. J., & Weerapana, E. (2019). Reactive-cysteine profiling for drug discovery. Current Opinion in Chemical Biology, 50, 29–36. https://doi.org/10.1016/j.cbpa.2019.02.010
  • Mayoka, G., Woodland, J. G., & Chibale, K. (2022). Thwarting protein synthesis leads to malaria parasite paralysis. Trends in Parasitology, 38(9), 719–721. https://doi.org/10.1016/j.pt.2022.07.001
  • Menkin-Smith, L., & Winders, W. T. (2020). Plasmodium vivax Malaria. StatPearls.
  • Mishra, M., Singh, V., & Singh, S. (2019). Structural insights into key Plasmodium proteases as therapeutic drug targets. Frontiers in Microbiology, 10, 394. https://doi.org/10.3389/fmicb.2019.00394
  • Morris, G. M., & Lim‐Wilby, M. (2008). Molecular docking BT. In A. Kukol (Ed.), Molecular Modeling of Proteins (pp. 365–382). Humana Press.
  • Neves, B. J., Braga, R. C., Melo-Filho, C. C., Moreira-Filho, J. T., Muratov, E. N., & Andrade, C. H. (2018). QSAR-based virtual screening: Advances and applications in drug discovery. Frontiers in Pharmacology, 9, 1275. https://doi.org/10.1080/10799893.2020.1759092
  • Ngotho, P., Soares, A. B., Hentzschel, F., Achcar, F., Bertuccini, L., & Marti, M. (2019). Revisiting gametocyte biology in malaria parasites. FEMS Microbiology Reviews, 43(4), 401–414. https://doi.org/10.1093/femsre/fuz020
  • Nguyen, P. T. V., Van Dat, T., Mizukami, S., Nguyen, D. L. H., Mosaddeque, F., Kim, S. N., Nguyen, D. H. B., Đinh, O. T., Vo, T. L., Nguyen, G. L. T., & Quoc Duong, C. (2021). 2D-quantitative structure–activity relationships model using PLS method for anti-malarial activities of anti-haemozoin compounds. Malaria Journal, 20(1), 1–15. https://doi.org/10.1186/s12936-021-03775-2
  • Ntonga, P. A., Baldovini, N., Mouray, E., Mambu, L., Belong, P., & Grellier, P. (2014). Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestus ss. Parasite, 21, 33. https://doi.org/10.1051/parasite/2014033
  • Nwonuma, C. O., Atanu, F. O., Okonkwo, N. C., Egharevba, G. O., Udofia, I. A., Evbuomwan, I. O., Alejolowo, O. O., Osemwegie, O. O., Adelani-Akande, T., & Dogunro, F. A. (2022). Evaluation of anti-malarial activity and GC–MS finger printing of cannabis: An in vivo and in silico approach. Scientific African, 15, e01108. https://doi.org/10.1016/j.sciaf.2022.e01108
  • Ojha, P. K., Kumar, V., Roy, J., & Roy, K. (2021). Recent advances in quantitative structure–activity relationship models of antimalarial drugs. Expert Opinion on Drug Discovery, 16(6), 659–695. https://doi.org/10.1080/17460441.2021.1866535
  • Ojo, O. A., Ojo, A. B., Okolie, C., Abdurrahman, J., Barnabas, M., Evbuomwan, I. O., Atunwa, O. P., Atunwa, B., Iyobhebhe, M., Elebiyo, T. C., & Nwonuma, C. O. (2021a). Elucidating the interactions of compounds identified from Aframomum melegueta seeds as promising candidates for the management of diabetes mellitus: A computational approach. Informatics in Medicine Unlocked, 26, 100720. https://doi.org/10.1016/j.imu.2021.100720
  • Ojo, O. A., Ojo, A. B., Okolie, C., Nwakama, M. A. C., Iyobhebhe, M., Evbuomwan, I. O., Nwonuma, C. O., Maimako, R. F., Adegboyega, A. E., Taiwo, O. A., & Alsharif, K. F. (2021b). Deciphering the interactions of bioactive compounds in selected traditional medicinal plants against Alzheimer’s diseases via pharmacophore modeling, auto-QSAR, and molecular docking approaches. Molecules, 26(7), 1996. https://doi.org/10.3390/molecules26071996
  • Ojo, O. A., Oni, A. I., Grant, S., Amanze, J., Ojo, A. B., Taiwo, O. A., Maimako, R. F., Evbuomwan, I. O., Iyobhebhe, M., Nwonuma, C. O., & Osemwegie, O. (2022). Antidiabetic activity of elephant grass (Cenchrus purpureus (Schumach.) Morrone) via activation of PI3K/AkT signaling pathway, oxidative stress inhibition, and apoptosis in Wistar rats. Frontiers in Pharmacology, 13, 845196. https://doi.org/10.3389/fphar.2022.845196
  • Okere, S. O., Sangodele, J. O., Ogunwole, E., Adams, M. D., & Shafe, M. O. (2014). Antiplasmodial activity of aqueous leaf extract of Cymbopogon citratus against Plasmodium falciparum infected rats. American Journal of Biomedical and Life Sciences, 2(3), 60–64. https://doi.org/10.11648/j.ajbls.20140203.12
  • Oladeji, O. S., Adelowo, F. E., Ayodele, D. T., & Odelade, K. A. (2019). Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Scientific African, 6, e00137. https://doi.org/10.1016/j.sciaf.2019.e00137
  • Olotu, F. A., Agoni, C., Soremekun, O., & Soliman, M. E. (2020). The recent application of 3D-QSAR and docking studies to novel HIV-protease inhibitor drug discovery. Expert Opinion on Drug Discovery, 15(9), 1095–1109. https://doi.org/10.1080/17460441.2020.1773428
  • Oluba, O. M. (2019). Ganoderma terpenoid extract exhibited anti-plasmodial activity by a mechanism involving reduction in erythrocyte and hepatic lipids in Plasmodium berghei-infected mice. Lipids in Health and Disease, 18(1), 1–9. https://doi.org/10.1186/s12944-018-0951-x
  • Opo, F. A., Rahman, M. M., Ahammad, F., Ahmed, I., Bhuiyan, M. A., & Asiri, A. M. (2021). Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-83626-x
  • Oprea, T. I., Davis, A. M., Teague, S. J., & Leeson, P. D. (2001). Is there a difference between leads and drugs? A historical perspective. Journal of Chemical Information and Computer Sciences, 41(5), 1308–1315. https://doi.org/10.1021/ci010366a
  • Paul, M. K., & Mukhopadhyay, A. K. (2004). Tyrosine kinase–role and significance in cancer. International Journal of Medical Sciences, 1(2), 101. https://doi.org/10.7150/ijms.1.101
  • Paul, R. K., Ahmad, I., Patel, H., Kumar, V., & Raza, K. (2023). Phytochemicals from Amberboa ramosa as potential DPP-IV inhibitors for the management of Type-II diabetes mellitus: Inferences from in-silico investigations. Journal of Molecular Structure, 1271, 134045. https://doi.org/10.1016/j.molstruc.2022.134045
  • Phillips, M. A., Burrows, J. N., Manyando, C., van Huijsduijnen, R. H., Van Voorhis, W. C., & Wells, T. N. C. (2017). Malaria. Nature Reviews Disease Primers, 3(17050), 1-24. https://doi.org/10.1038/nrdp.2017.50
  • Qing, X., Lee, X. Y., De Raeymaecker, J., Tame, J. R., Zhang, K. Y., De Maeyer, M., & Voet, A. (2014). Pharmacophore modeling: Advances, limitations, and current utility in drug discovery. Journal of Receptor, Ligand and Channel Research, 7, 81–92. https://doi.org/10.2147/JRLCR.S46843
  • Rahman, S. M., Atikullah, M., Islam, M., Mohaimenul, M., Ahammad, F., Saha, B., & Rahman, M. (2019). Anti-inflammatory, antinociceptive and antidiarrhoeal activities of methanol and ethyl acetate extract of Hemigraphis alternata leaves in mice. Clinical Phytoscience, 5(1), 1–13. https://doi.org/10.1186/s40816-019-0110-6
  • Rask, T. S., Hansen, D. A., Theander, T. G., Gorm Pedersen, A., & Lavstsen, T. (2010). Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes–divide and conquer. PLoS Computational Biology, 6(9), e1000933. https://doi.org/10.1371/journal.pcbi.1000933
  • Roy, K., Das, R. N., Ambure, P., & Aher, R. B. (2016). Be aware of error measures. Further studies on validation of predictive QSAR models. Chemometrics and Intelligent Laboratory Systems, 152, 18–33. https://doi.org/10.1016/j.chemolab.2016.01.008
  • Saeed, M., Saeed, A., Alam, M. J., & Alreshidi, M. (2020). Identification of persuasive antiviral natural compounds for COVID-19 by targeting endoribonuclease NSP15: A structural-bioinformatics approach. Molecules, 25(23), 5657. https://doi.org/10.3390/molecules25235657
  • Salentin, S., Haupt, V. J., Daminelli, S., & Schroeder, M. (2014). Polypharmacology rescored: Protein–ligand interaction profiles for remote binding site similarity assessment. Progress in Biophysics and Molecular Biology, 116(2-3), 174–186. https://doi.org/10.1016/j.pbiomolbio.2014.05.006
  • Samad, A., Ahammad, F., Nain, Z., Alam, R., Imon, R. R., Hasan, M., & Rahman, M. S. (2022). Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 40(1), 14–30. https://doi.org/10.1080/07391102.2020.1792347
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Sawada, T., Fedorov, D. G., & Kitaura, K. (2010). Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations. Journal of the American Chemical Society, 132(47), 16862–16872. https://doi.org/10.1021/ja105051e
  • Schaller, D., Šribar, D., Noonan, T., Deng, L., Nguyen, T. N., Pach, S., Machalz, D., Bermudez, M., & Wolber, G. (2020). Next generation 3D pharmacophore modeling. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10(4), e1468. https://doi.org/10.1002/wcms.1468
  • Schiebel, J., Gaspari, R., Wulsdorf, T., Ngo, K., Sohn, C., Schrader, T. E., Cavalli, A., Ostermann, A., Heine, A., & Klebe, G. (2018). Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nature Communications, 9(1), 1–15. https://doi.org/10.1038/s41467-018-05769-2
  • Seydel, K. B., Kampondeni, S. D., Valim, C., Potchen, M. J., Milner, D. A., Muwalo, F. W., Birbeck, G. L., Bradley, W. G., Fox, L. L., Glover, S. J., Hammond, C. A., Heyderman, R. S., Chilingulo, C. A., Molyneux, M. E., & Taylor, T. E. (2015). Brain swelling and death in children with cerebral malaria. The New England Journal of Medicine, 372(12), 1126–1137. https://doi.org/10.1056/NEJMoa1400116
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Subramaniam, G., Yew, X. Y., & Sivasamugham, L. A. (2020). Antibacterial activity of Cymbopogon citratus against clinically important bacteria. South African Journal of Chemical Engineering, 34, 26–30. https://doi.org/10.1016/j.sajce.2020.05.010
  • Swift, R. P., Rajaram, K., Elahi, R., Liu, H. B., & Prigge, S. T. (2022). Roles of ferredoxin-dependent proteins in the apicoplast of Plasmodium falciparum parasites. Mbio, 13(1), e03023–21. https://doi.org/10.1128/mbio.03023-21
  • Tchoumbougnang, F., Zollo, P. A., Dagne, E., & Mekonnen, Y. (2005). In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Medica, 71(01), 20–23. https://doi.org/10.1055/s-2005-837745
  • Thu, A. M., Phyo, A. P., Landier, J., Parker, D. M., & Nosten, F. H. (2017). Combating multidrug‐resistant Plasmodium falciparum malaria. The FEBS Journal, 284(16), 2569–2578. https://doi.org/10.1111/febs.14127
  • Triglia, T., & Cowman, A. F. (1999). The mechanism of resistance to sulfa drugs in Plasmodium falciparum. Drug Resistance Updates, 2(1), 15–19. https://doi.org/10.1054/drup.1998.0060
  • Tu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine, 17(10), 1217–1220. https://doi.org/10.1038/nm.2471
  • Turner, L., Lavstsen, T., Berger, S. S., Wang, C. W., Petersen, J. E., Avril, M., Brazier, A. J., Freeth, J., Jespersen, J. S., Nielsen, M. A., & Magistrado, P. (2013). Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature, 498(7455), 502–505. https://doi.org/10.1038/nature12216
  • Uwimana, A., Legrand, E., Stokes, B. H., Ndikumana, J. L. M., Warsame, M., Umulisa, N., Ngamije, D., Munyaneza, T., Mazarati, J. B., Munguti, K., & Campagne, P. (2020). Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nature Medicine, 26(10), 1602–1608. https://doi.org/10.1038/s41591-020-1005-2
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Vijay, R., Drisya, V. M., Selta, D. R. F., Rathi, M. A., Krishnan, V. G., Alkhalifah, D. H. M., & Hozzein, W. N. (2022). Synthesis and characterization of silver nanomaterial from aqueous extract of Commelina forskaolii and its potential antimicrobial activity against Gram negative pathogens. Journal of King Saud University-Science, 35, 102373. https://doi.org/10.1016/j.jksus.2022.102373
  • Vora, J., Patel, S., Athar, M., Sinha, S., Chhabria, M. T., Jha, P. C., & Shrivastava, N. (2019). Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. Journal of Biomolecular Structure and Dynamics, 38(6), 1726–1740. https://doi.org/10.1080/07391102.2019.1615002
  • Wang, Y., Liu, H., Fan, Y., Chen, X., Yang, Y., Zhu, L., Zhao, J., Chen, Y., & Zhang, Y. (2019). In silico prediction of human intravenous pharmacokinetic parameters with improved accuracy. Journal of Chemical Information and Modeling, 59(9), 3968–3980. https://doi.org/10.1021/acs.jcim.9b00300
  • Wassmer, S. C., & Grau, G. E. R. (2017). Severe malaria: What’s new on the pathogenesis front? International Journal for Parasitology, 47(2-3), 145–152. https://doi.org/10.1016/j.ijpara.2016.08.002
  • Wellems, T. E., & Plowe, C. V. (2001). Chloroquine-resistant malaria. The Journal of Infectious Diseases, 184(6), 770–776. https://doi.org/10.1086/322858
  • Wells, T. N. (2011). Natural products as starting points for future anti-malarial therapies: Going back to our roots? Malaria Journal, 10(1), 1–12. https://doi.org/10.1186/1475-2875-10-S1-S3
  • White, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., Mokuolu, O. A., & Dondorp, A. M. (2014). Malaria. Lancet, 383(9918), 723–735. https://doi.org/10.1016/S0140-6736(13)60024-0
  • Wilde, M. L., Triglia, T., Marapana, D., Thompson, J. K., Kouzmitchev, A. A., Bullen, H. E., Gilson, P. R., Cowman, A. F., & Tonkin, C. J. (2019). Protein kinase A is essential for invasion of Plasmodium falciparum into human erythrocytes. MBio, 10(5), e01972-19. https://doi.org/10.1128/mBio.01972-19
  • World Health Organization (WHO). (2021a). WHO Recommends Groundbreaking Malaria Vaccine for Children at Risk. WHO. www.who.int.
  • World Health Organization (WHO). (2021b). Global Technical Strategy for Malaria 2016–2030. WHO Press. www.who.int.
  • World Health Organization (WHO). (2022). World Malaria Report, 2022. WHO Press. www.who.int.
  • Wu, Y. I. M. I. N., Kirkman, L. A., & Wellems, T. E. (1996). Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proceedings of the National Academy of Sciences, 93(3), 1130–1134. https://doi.org/10.1073/pnas.93.3.1130
  • Yadav, D. K., & Khan, F. (2013). QSAR, docking and ADMET studies of camptothecin derivatives as inhibitors of DNA topoisomerase‐I. Journal of Chemometrics, 27(1-2), 21–33. https://doi.org/10.1002/cem.2488
  • Yadav, D. K., Kalani, K., Khan, F., & Srivastava, S. K. (2013). QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549. Medicinal Chemistry, 9(8), 1073–1084. https://doi.org/10.2174/1573406411309080009
  • Yousefinejad, S., Mahboubifar, M., & Eskandari, R. (2019). Quantitative structure–activity relationship to predict the anti-malarial activity in a set of new imidazolopiperazines based on artificial neural networks. Malaria Journal, 18(1), 1–17. https://doi.org/10.1186/s12936-019-2941-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.