296
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational analysis and molecular dynamics simulation of high-risk single nucleotide polymorphisms of the ADAM10 gene

ORCID Icon, ORCID Icon & ORCID Icon
Pages 412-424 | Received 01 Sep 2022, Accepted 13 Mar 2023, Published online: 30 Mar 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.
  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Albanaz, A. T., Rodrigues, C. H., Pires, D. E., & Ascher, D. B. (2017). Combating mutations in genetic disease and drug resistance: Understanding molecular mechanisms to guide drug design. Expert Opinion on Drug Discovery, 12(6), 553–563. https://doi.org/10.1080/17460441.2017.1322579
  • Arshad, M., Bhatti, A., & John, P. (2018). Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PLoS One, 13(1), e0188143. https://doi.org/10.1371/journal.pone.0188143
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350.
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R., & Ben-Tal, N. (2004). ConSeq: The identification of functionally and structurally important residues in protein sequences. Bioinformatics, 20(8), 1322–1324. https://doi.org/10.1093/bioinformatics/bth070
  • Botstein, D., & Risch, N. (2003). Discovering genotypes underlying human phenotypes: Past successes for mendelian disease, future approaches for complex disease. Nature Genetics, 33(S3), 228–237. https://doi.org/10.1038/ng1090
  • Brummer, T., Pigoni, M., Rossello, A., Wang, H., Noy, P. J., Tomlinson, M. G., Blobel, C. P., & Lichtenthaler, S. F. (2018). The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation. The FASEB Journal, 32(7), 3560–3573. https://doi.org/10.1096/fj.201700823RR
  • Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics, 14(Suppl 3), S2–S9. https://doi.org/10.1186/1471-2164-14-S3-S2
  • Capriotti, E., Fariselli, P., Calabrese, R., & Casadio, R. (2005). Predicting protein stability changes from sequences using support vector machines. Bioinformatics, 21(Suppl 2), ii54–ii58. https://doi.org/10.1093/bioinformatics/bti1109
  • Cheng, Y., Lin, L., Li, X., Lu, A., Hou, C., Wu, Q., Hu, X., Zhou, Z., Chen, Z., & Tang, F. (2021). ADAM10 is involved in the oncogenic process and chemo-resistance of triple-negative breast cancer via regulating Notch1 signaling pathway, CD44 and PrPc. Cancer Cell International, 21, 32.
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195
  • Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231. https://doi.org/10.1101/gr.8.12.1229
  • Crawford, H. C., Dempsey, P. J., Brown, G., Adam, L., & Moss, M. L. (2009). ADAM10 as a therapeutic target for cancer and inflammation. Current Pharmaceutical Design, 15(20), 2288–2299. https://doi.org/10.2174/138161209788682442
  • De Baets, G., Van Durme, J., Reumers, J., Maurer-Stroh, S., Vanhee, P., Dopazo, J., Schymkowitz, J., & Rousseau, F. (2012). SNPeffect 4.0: On-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Research, 40(D1), D935–D939. https://doi.org/10.1093/nar/gkr996
  • Ding, Y., et al. (2019). ADAM10 is a potential novel prognostic biomarker for Sacral Chordoma. Annals of Clinical & Laboratory Science, 49, 309–316.
  • Forsberg, L., de Faire, U., Marklund, S. L., Andersson, P. M., Stegmayr, B., & Morgenstern, R. (2000). Phenotype determination of a common Pro-Leu polymorphism in human glutathione peroxidase 1. Blood Cells, Molecules, and Diseases, 26(5), 423–426. https://doi.org/10.1006/bcmd.2000.0325
  • Gibb, D. R., Saleem, S. J., Chaimowitz, N. S., Mathews, J., & Conrad, D. H. (2011). The emergence of ADAM10 as a regulator of lymphocyte development and autoimmunity. Molecular Immunology, 48(11), 1319–1327. https://doi.org/10.1016/j.molimm.2010.12.005
  • González-Pérez, A., & López-Bigas, N. (2011). Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. American Journal of Human Genetics, 88(4), 440–449. https://doi.org/10.1016/j.ajhg.2011.03.004
  • Hecht, M., Bromberg, Y., & Rost, B. (2015). Better prediction of functional effects for sequence variants. BMC Genomics, 16(S8), 1–12. https://doi.org/10.1186/1471-2164-16-S8-S1
  • Kucukkal, T. G., Petukh, M., Li, L., & Alexov, E. (2015). Structural and physico-chemical effects of disease and non-disease nsSNPs on proteins. Current Opinion in Structural Biology, 32, 18–24. https://doi.org/10.1016/j.sbi.2015.01.003
  • Lichtenthaler, S. F., Tschirner, S. K., & Steiner, H. (2022). Secretases in Alzheimer’s disease: Novel insights into proteolysis of APP and TREM2. Current Opinion in Neurobiology, 72, 101–110. https://doi.org/10.1016/j.conb.2021.09.003
  • Manzine, P. R., Ettcheto, M., Cano, A., Busquets, O., Marcello, E., Pelucchi, S., Di Luca, M., Endres, K., Olloquequi, J., Camins, A., & Cominetti, M. R. (2019). ADAM10 in Alzheimer’s disease: Pharmacological modulation by natural compounds and its role as a peripheral marker. Biomedicine & Pharmacotherapy, 113, 108661. https://doi.org/10.1016/j.biopha.2019.108661
  • Mayrose, I., Graur, D., Ben-Tal, N., & Pupko, T. (2004). Comparison of site-specific rate-inference methods for protein sequences: Empirical Bayesian methods are superior. Molecular Biology and Evolution, 21(9), 1781–1791. https://doi.org/10.1093/molbev/msh194
  • Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2017). PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45(D1), D183–D189. https://doi.org/10.1093/nar/gkw1138
  • Muraguchi, T., Takegami, Y., Ohtsuka, T., Kitajima, S., Chandana, E. P. S., Omura, A., Miki, T., Takahashi, R., Matsumoto, N., Ludwig, A., Noda, M., & Takahashi, C. (2007). RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nature Neuroscience, 10(7), 838–845. https://doi.org/10.1038/nn1922
  • Pereira, G. R. C., Tavares, G. D. B., de Freitas, M. C., & De Mesquita, J. F. (2020). In silico analysis of the tryptophan hydroxylase 2 (TPH2) protein variants related to psychiatric disorders. PLoS One, 15(3), e0229730. https://doi.org/10.1371/journal.pone.0229730
  • Petukh, M., Kucukkal, T. G., & Alexov, E. (2015). On human disease‐causing amino acid variants: Statistical study of sequence and structural patterns. Human Mutation, 36(5), 524–534. https://doi.org/10.1002/humu.22770
  • Pires, A. S., Porto, W. F., Franco, O. L., & Alencar, S. A. (2017). In silico analyses of deleterious missense SNPs of human apolipoprotein E3. Scientific Reports, 7(1), 2509. https://doi.org/10.1038/s41598-017-01737-w
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(W1), W314–W319. https://doi.org/10.1093/nar/gku411
  • Rajendran, V., & Sethumadhavan, R. (2014). Drug resistance mechanism of PncA in Mycobacterium tuberculosis. Journal of Biomolecular Structure & Dynamics, 32(2), 209–221. https://doi.org/10.1080/07391102.2012.759885
  • Rajendran, V., Gopalakrishnan, C., & Sethumadhavan, R. (2018). Pathological role of a point mutation (T315I) in BCR‐ABL1 protein—a computational insight. Journal of Cellular Biochemistry, 119(1), 918–925. https://doi.org/10.1002/jcb.26257
  • Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Research, 39(17), e118–e118. https://doi.org/10.1093/nar/gkr407
  • Saha, N., Robev, D., Himanen, J. P., & Nikolov, D. B. (2019). ADAM proteases: Emerging role and targeting of the non-catalytic domains. Cancer Letters, 467, 50–57. https://doi.org/10.1016/j.canlet.2019.10.003
  • Sahin, U., Weskamp, G., Kelly, K., Zhou, H.-M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., & Blobel, C. P. (2004). Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. The Journal of Cell Biology, 164(5), 769–779.
  • Seegar, T. C., Killingsworth, L. B., Saha, N., Meyer, P. A., Patra, D., Zimmerman, B., Janes, P. W., Rubinstein, E., Nikolov, D. B., Skiniotis, G., Kruse, A. C., & Blacklow, S. C. (2017). Structural basis for regulated proteolysis by the α-Secretase ADAM10. Cell, 171(7), 1638–1648.e7. https://doi.org/10.1016/j.cell.2017.11.014
  • Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(W1), W452–W457. https://doi.org/10.1093/nar/gks539
  • Singh, H. B., Deka, D., Das, D., & Borbora, D. (2017). Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in the human Quinone Oxidoreductase 1 (NQO1). Meta Gene, 11, 127–135.
  • Singh, R. K., & Mahalingam, K. (2017). In silico approach to identify non-synonymous SNPs in human obesity related gene, MC3R (melanocortin-3-receptor). Computational Biology and Chemistry, 67, 122–130. https://doi.org/10.1016/j.compbiolchem.2016.12.009
  • Smith, K. M., Gaultier, A., Cousin, H., Alfandari, D., White, J. M., & DeSimone, D. W. (2002). The cysteine-rich domain regulates ADAM protease function in vivo. The Journal of Cell Biology, 159(5), 893–902. https://doi.org/10.1083/jcb.200206023
  • Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Heywood, S., Hussain, M., Phillips, A. D., & Cooper, D. N. (2017). The Human Gene Mutation Database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Human Genetics, 136(6), 665–677. https://doi.org/10.1007/s00439-017-1779-6
  • Suh, J., Choi, S. H., Romano, D. M., Gannon, M. A., Lesinski, A. N., Kim, D. Y., & Tanzi, R. E. (2013). ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron, 80(2), 385–401. https://doi.org/10.1016/j.neuron.2013.08.035
  • Tsang, J. Y. S., Lee, M. A., Chan, T.-H., Li, J., Ni, Y.-B., Shao, Y., Chan, S.-K., Cheungc, S.-Y., Lau, K.-F., & Tse, G. M. K. (2018). Proteolytic cleavage of amyloid precursor protein by ADAM10 mediates proliferation and migration in breast cancer. EBioMedicine, 38, 89–99. https://doi.org/10.1016/j.ebiom.2018.11.012
  • Venselaar, H., Te Beek, T. A. H., Kuipers, R. K. P., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-science approach with life scientist friendly interfaces. BMC Bioinformatics, 11, 548.
  • Yates, C. M., Filippis, I., Kelley, L. A., & Sternberg, M. J. E. (2014). SuSPect: Enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology, 426(14), 2692–2701. https://doi.org/10.1016/j.jmb.2014.04.026
  • Yilmaz, A. (2015). Bioinformatic analysis of GJB2 gene missense mutations. Cell Biochemistry and Biophysics, 71(3), 1623–1642. https://doi.org/10.1007/s12013-014-0385-7
  • Zbodakova, O., Chalupsky, K., Sarnova, L., Kasparek, P., Jirouskova, M., Gregor, M., & Sedlacek, R. (2021). ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis. Scientific Reports, 11(1), 11414. https://doi.org/10.1038/s41598-021-90716-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.