352
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Machine-learning technique, QSAR and molecular dynamics for hERG–drug interactions

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 13766-13791 | Received 22 Jan 2022, Accepted 06 Feb 2023, Published online: 05 Apr 2023

References

  • Achary, P. G. R., Toropova, A. P., & Toropov, A. A. (2021). Prediction of the self-accelerating decomposition temperature of organic peroxides. Process Safety Progress, 40(2), e12189.
  • Aronov, A. M. (2005). Predictive in silico modeling for hERG channel blockers. Drug Discovery Today, 10(2), 149–155.
  • Boukharta, L., Keränen, H., Stary-Weinzinger, A., Wallin, G., de Groot, B. L., & Åqvist, J. (2011). Computer simulations of structure–activity relationships for hERG channel blockers. Biochemistry, 50(27), 6146–6156.
  • Cai, C., et al. (2019). Deep learning-based prediction of drug-induced cardiotoxicity. Journal of Chemical Information and Modeling, 59(3), 1073–1084.
  • Chavan, S., Abdelaziz, A., Wiklander, J. G., & Nicholls, I. A. (2016). A k-nearest neighbor classification of hERG K + channel blockers. Journal of Computer-Aided Molecular Design, 30(3), 229–236.
  • Coi, A., & Bianucci, A. M. (2013). Combining structure-and ligand-based approaches for studies of interactions between different conformations of the hERG K + channel pore and known ligands. Journal of Molecular Graphics and Modelling, 46, 93–104.
  • Craveiro, N. S., Lopes, B. S., Tomás, L., & Almeida, S. F. (2020). Drug withdrawal due to safety: a review of the data supporting withdrawal decision. Current Drug Safety, 15(1), 4–12.
  • Creanza, T. M., Delre, P., Ancona, N., Lentini, G., Saviano, M., & Mangiatordi, G. F. (2021). Structure-based prediction of hERG-related cardiotoxicity: A benchmark study. Journal of Chemical Information and Modeling, 61(9), 4758–4770.
  • Dickson, C. J., Velez-Vega, C., & Duca, J. S. (2019). Revealing molecular determinants of hERG blocker and activator binding. Journal of Chemical Information and Modeling, 60(1), 192–203.
  • Du, L., Li, M., You, Q., & Xia, L. (2007). A novel structure-based virtual screening model for the hERG channel blockers. Biochemical and Biophysical Research Communications, 355(4), 889–894. https://doi.org/10.1016/j.bbrc.2007.02.068
  • Du-Cuny, L., Chen, L., & Zhang, S. (2011). A critical assessment of combined ligand-and structure-based approaches to HERG channel blocker modeling. Journal of Chemical Information and Modeling, 51(11), 2948–2960.
  • Ekins, S., Williams, A. J., & Xu, J. J. (2010). A predictive ligand-based Bayesian model for human drug-induced liver injury. Drug Metabolism and Disposition, 38(12), 2302–2308.
  • Escobar, F., Gomis-Tena, J., Saiz, J., & Romero, L. (2022). Automatic modeling of dynamic drug-hERG channel interactions using three voltage protocols and machine learning techniques: A simulation study. Computer Methods and Programs in Biomedicine, 226, 107148. https://doi.org/10.1016/j.cmpb.2022.107148
  • Ferri, N., Siegl, P., Corsini, A., Herrmann, J., Lerman, A., & Benghozi, R. (2013). Drug attrition during pre-clinical and clinical development: Understanding and managing drug-induced cardiotoxicity. Pharmacology & Therapeutics, 138(3), 470–484.
  • Fielden, M. R., Eynon, B. P., Natsoulis, G., Jarnagin, K., Banas, D., & Kolaja, K. L. (2005). A gene expression signature that predicts the future onset of drug-induced renal tubular toxicity. Toxicologic Pathology, 33(6), 675–683.
  • Gobbi, M., Beeg, M., Toropova, M. A., Toropov, A. A., & Salmona, M. (2016). Monte Carlo method for predicting of cardiac toxicity: hERG blocker compounds. Toxicology Letters, 250, 42–46.
  • Gramatica, P., Chirico, N., Papa, E., Cassani, S., & Kovarich, S. (2013). QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. Journal of Computational Chemistry, 34(24), 2121–2132. https://doi.org/10.1002/jcc.23361
  • Hari Narayana Moorthy, N. S., Ramos, M. J., & Fernandes, P. A. (2013). QSAR and pharmacophore analysis of a series of piperidinyl urea derivatives as HERG blockers and H3 antagonists. Current Drug Discovery Technologies, 10(1), 47–58.
  • Inanobe, A., Kamiya, N., Murakami, S., Fukunishi, Y., Nakamura, H., & Kurachi, Y. (2008). In silico prediction of the chemical block of human ether-a-go-go-related gene (hERG) K + current. Journal of Physiological Sciences, 58(7), 459–470.
  • Jaganathan, K., Tayara, H., & Chong, K. T. (2021). Prediction of drug-induced liver toxicity using SVM and optimal descriptor sets. International Journal of Molecular Sciences, 22(15), 8073.
  • Jia, L., & Sun, H. (2008). Support vector machines classification of hERG liabilities based on atom types. Bioorganic & Medicinal Chemistry, 16(11), 6252–6260.
  • Kalyaanamoorthy, S., et al. (2020). A structure-based computational workflow to predict liability and binding modes of small molecules to hERG. Scientific Reports, 10(1), 1–18.
  • Kelleni, M. T., & Abdelbasset, M. (2018). Drug induced cardiotoxicity: Mechanism, prevention and management. In Cardiotoxicity. IntechOpen.
  • Keserü, G. M. (2003). Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods. Bioorganic & Medicinal Chemistry Letters, 13(16), 2773–2775.
  • Kim, H., & Nam, H. (2020). hERG-Att: Self-attention-based deep neural network for predicting hERG blockers. Computational Biology and Chemistry, 87, 107286.
  • Klopman, G. (1984). Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules. Journal of the American Chemical Society. 106(24), 7315–7321.
  • Koulgi, S., et al. (2022). Molecular dynamics of hERG channel: insights into understanding the binding of small molecules for detuning cardiotoxicity. Journal of Biomolecular Structure and Dynamics, 40(13), 5996–6012.
  • Li, Q., Jørgensen, F. S., Oprea, T., Brunak, S., & Taboureau, O. (2008). hERG classification model based on a combination of support vector machine method and GRIND descriptors. Molecular Pharmaceutics, 5(1), 117–127.
  • Luo, F., Gu, J., Chen, L., & Xu, X. (2014). Molecular docking and molecular dynamics studies on the structure–activity relationship of fluoroquinolone for the HERG channel. Molecular Biosystems, 10(11), 2863–2869.
  • Ma, W., Wei, S., Zhang, B., & Li, W. (2020). Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Frontiers in Cell and Developmental Biology, 8, 434.
  • Maly, J., Emigh, A.M., DeMarco, K.R., Furutani, K., Sack, J.T., Clancy, C.E., Vorobyov, I., & Yarov-Yarovoy, V. (2022). Structural modeling of the hERG potassium channel and associated drug interactions. Frontiers in Pharmacology, 13, 966463.
  • Mitcheson, J. S., Chen, J., & Sanguinetti, M. C. (2000). Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. Journal of General Physiology, 115(3), 229–240.
  • Munawar, S., Vandenberg, J. I., & Jabeen, I. (2019). Molecular docking guided grid-independent descriptor analysis to probe the impact of water molecules on conformational changes of hERG inhibitors in drug trapping phenomenon. International Journal of Molecular Sciences, 20(14), 3385.
  • Pearlstein, R. A., Vaz, R. J., Kang, J., Chen, X.-L., Preobrazhenskaya, M., Shchekotikhin, A. E., Korolev, A. M., Lysenkova, L. N., Miroshnikova, O. V., Hendrix, J., & Rampe, D. (2003). Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorganic & Medicinal Chemistry Letters, 13(10), 1829–1835. https://doi.org/10.1016/s0960-894x(03)00196-3
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 1-23. https://doi.org/10.3390/ijms20184331
  • Polak, S., Wiśniowska, B., Ahamadi, M., & Mendyk, A. (2011). Prediction of the hERG potassium channel inhibition potential with use of artificial neural networks. Applied Soft Computing, 11(2), 2611–2617.
  • Pourbasheer, E., Beheshti, A., Khajehsharifi, H., Ganjali, M. R., & Norouzi, P. (2013). QSAR study on hERG inhibitory effect of kappa opioid receptor antagonists by linear and non-linear methods. Medicinal Chemistry Research, 22(9), 4047–4058.
  • Prival, M. J. (2001). Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals. Environmental and Molecular Mutagenesis, 37(1), 55–69.
  • Roden, D. M. (2004). Drug-induced prolongation of the QT interval. New England Journal of Medicine. 350(10), 1013–1022.
  • S. Release. (2019). “Schrödinger Release 2019-4: LigPrep,” Schrödinger, LLC New York, NY, USA,
  • Schmidtke, P., Ciantar, M., Theret, I., & Ducrot, P. (2014). Dynamics of hERG closure allow novel insights into hERG blocking by small molecules. Journal of Chemical Information and Modeling, 54(8), 2320–2333.
  • Shahbaaz, M., Amir, M., Rahman, S., Mustafa Hasan, G., Dohare, R., Bisetty, K., Ahmad, F., Kim, J., & Hassan, M. I. (2018). Structural insights into Rab21 GTPase activation mechanism by molecular dynamics simulations. Molecular Simulation, 44(3), 179–189.
  • Siramshetty, V. B., Chen, Q., Devarakonda, P., & Preissner, R. (2018). The Catch-22 of predicting hERG blockade using publicly accessible bioactivity data. Journal of Chemical Information and Modeling, 58(6), 1224–1233.
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate- DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409.
  • Thai, K.-M., & Ecker, G. F. (2008). A binary QSAR model for classification of hERG potassium channel blockers. Bioorganic & Medicinal Chemistry, 16(7), 4107–4119.
  • Tharwat, A., Moemen, Y. S., & Hassanien, A. E. (2017). Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. Journal of Biomedical Informatics, 68, 132–149.
  • Toropov, A. A., Raška Jr, I., Toropova, A. P., Raškova, M., Veselinović, A. M., & Veselinović, J. B. (2019). The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models. Science of the Total Environment, 659, 1387–1394.
  • Toropov, A. A., & Toropova, A. P. (2020). QSPR/QSAR: State-of-art, weirdness, the future. Molecules, 25(6), 1292.
  • Um, S., Karunakar, P., & Krishnamurthy, V. (2020). Homology modeling, virtual screening and dynamics study of proteins involved in Pebrine-Serine protease inhibitor 106 and spore wall protein 26. Journal of Biomolecular Structure and Dynamics, 38(17), 5148–5158.
  • Van Noord, C., Eijgelsheim, M., & Stricker, B. H. C. (2010). Drug-and non-drug-associated QT interval prolongation. British Journal of Clinical Pharmacology. 70(1), 16–23.
  • Velazquez-Libera, J. L., Caballero, J., Toropova, A. P., & Toropov, A. A. (2019). Estimation of 2D autocorrelation descriptors and 2D Monte Carlo descriptors as a tool to build up predictive models for acetylcholinesterase (AChE) inhibitory activity. Chemometrics and Intelligent Laboratory Systems, 184, 14–21.
  • Wang, W., & MacKinnon, R. (2017). Cryo-EM structure of the open human ether-à-go-go-related K + channel hERG. Cell, 169(3), 422–430.
  • Woo, Y.-T., Lai, D. Y., Argus, M. F., & Arcos, J. C. (1995). Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals. Toxicology Letters, 79(1–3), 219–228.
  • Yang, Y., Zhang, Y., Chen, X., Hua, Y., Xing, G., Deng, C., Liang, L., Lu, T., Chen, Y., & Liu, H. (2021). Reducing hERG toxicity using hERG classification model and fragment-growing network.
  • Zakaria, Z. Z., Benslimane, F. M., Nasrallah, G. K., Shurbaji, S., Younes, N. N., Mraiche, F., Da'as, S. I., & Yalcin, H. C. (2018). Using zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity. BioMed Research International, 2018, 1–10.
  • Zhang, H., Ding, L., Zou, Y., Hu, S. Q., Huang, H. G., Kong, W. B., & Zhang, J. (2016). Predicting drug-induced liver injury in human with Na{\"\i}ve Bayes classifier approach. Journal of Computer-Aided Molecular Design, 30(10), 889–898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.