134
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Binding order and apparent binding affinity in the bisubstrate activity of strictosidine synthase

&
Pages 15634-15646 | Received 22 Dec 2022, Accepted 06 Mar 2023, Published online: 21 Mar 2023

References

  • Abhishek, S., Deeksha, W., & Rajakumara, E. (2022). Mechanistic insights into allosteric regulation of methylated DNA and histone H3 recognition by SRA and SET domains of SUVH5 and the basis for di‐methylation of lysine residue. The FEBS Journal, 290(4), 1060–1077. https://doi.org/10.1111/febs.16633
  • Bernhardt, P., McCoy, E., & O’Connor, S. E. (2007). Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. Chemistry and Biology, 14(8), 888–897. https://doi.org/10.1016/j.chembiol.2007.07.008
  • Bernhardt, P., Usera, A. R., & O'Connor, S. E. (2010). Biocatalytic asymmetric formation of tetrahydro-β-carbolines. Tetrahedron Letters, 51(33), 4400–4402. https://doi.org/10.1016/j.tetlet.2010.06.075
  • Billingsley, J. M., DeNicola, A. B., Barber, J. S., Tang, M. C., Horecka, J., Chu, A., Garg, N. K., & Tang, Y. (2017). Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metabolic Engineering, 44, 117–125. https://doi.org/10.1016/j.ymben.2017.09.006
  • Buczkowski, A. (2022). Thermodynamic study of pH and sodium chloride impact on gemcitabine binding to cucurbit[7]uril in aqueous solutions. Journal of Molecular Liquids, 345, 117857. https://doi.org/10.1016/j.molliq.2021.117857
  • Cai, Y., Shao, N., Xie, H., Futamura, Y., Panjikar, S., Liu, H., Zhu, H., Osada, H., & Zou, H. (2019). Stereocomplementary chemoenzymatic pictet-spengler reactions for formation of rare azepino-indole frameworks: Discovery of antimalarial compounds. ACS Catalysis, 9(8), 7443–7448. https://doi.org/10.1021/acscatal.9b01628
  • Caputi, L., Franke, J., Farrow, S. C., Chung, K., Payne, R. M. E., Nguyen, T.-D., Dang, T.-T T., Carqueijeiro, I. S. T., Koudounas, K., Bernonville, T. D. d., Ameyaw, B., Jones, D. M., Vieira, I. J. C., Courdavault, V., & O., S. E. (2018). Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science, 360(6394), 1235–1239. https://doi.org/10.1126/science.aat410
  • Chen, S., Galan, M. C., Coltharp, C., & O’Connor, S. E. (2006). Redesign of a central enzyme in alkaloid biosynthesis. Chemistry and Biology, 13(11), 1137–1141. https://doi.org/10.1016/j.chembiol.2006.10.009
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Eger, E., Schrittwieser, J. H., Wetzl, D., Iding, H., Kuhn, B., & Kroutil, W. (2020). Asymmetric biocatalytic synthesis of 1-aryltetrahydro-β-carbolines enabled by “Substrate Walking. Chemistry - A European Journal, 26(69), 16281–16285. https://doi.org/10.1002/chem.202004449
  • Eger, E., Simon, A., Sharma, M., Yang, S., Breukelaar, W. B., Grogan, G., Houk, K. N., & Kroutil, W. (2020). Inverted binding of non-natural substrates in strictosidine synthase leads to a switch of stereochemical outcome in enzyme-catalyzed pictet-spengler reactions. Journal of the American Chemical Society, 142(2), 792–800. https://doi.org/10.1021/jacs.9b08704
  • Fischereder, E. M., Pressnitz, D., & Kroutil, W. (2016). Stereoselective cascade to C3-methylated strictosidine derivatives employing transaminases and strictosidine synthases. ACS Catalysis, 6(1), 23–30. https://doi.org/10.1021/acscatal.5b01839
  • Fischereder, E., Pressnitz, D., Kroutil, W., & Lutz, S. (2014). Engineering strictosidine synthase: Rational design of a small, focused circular permutation library of the β-propeller fold enzyme. Bioorganic & Medicinal Chemistry, 22(20), 5633–5637. https://doi.org/10.1016/j.bmc.2014.06.023
  • Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972–976. https://doi.org/10.1126/science.1136800
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Ilari, A., Franceschini, S., Bonamore, A., Arenghi, F., Botta, B., Macone, A., Pasquo, A., Bellucci, L., & Boffi, A. (2009). Structural basis of enzymatic (S)-norcoclaurine biosynthesis. Journal of Biological Chemistry, 284(2), 897–904. https://doi.org/10.1074/jbc.M803738200
  • Institute of Electrical and Electronics Engineers, Association for Computing Machinery, IEEE Computer Society, IEEE Computer Society, & Association for Computing Machinery. (2006). (Eds.) Powerful beyond imagination: SC 06. [2006 IEEE/ACM SC Conference]. November 11–17, 2006, IEEE.
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Koepke, J., Ma, X., Fritzsch, G., Michel, H., & Stöckigt, J. (2005). Crystallization and preliminary X-ray analysis of strictosidine synthase and its complex with the substrate tryptamine. Acta Crystallographica Section D: Biological Crystallography, 61(6), 690–693. https://doi.org/10.1107/S0907444904029348
  • Lichman, B. R. (2021). The scaffold-forming steps of plant alkaloid biosynthesis. Natural Product Reports, 38(1), 103–129. https://doi.org/10.1039/D0NP00031K
  • Lichman, B. R., Gershater, M. C., Lamming, E. D., Pesnot, T., Sula, A., Keep, N. H., Hailes, H. C., & Ward, J. M. (2015). ‘Dopamine‐first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile. The FEBS Journal, 282(6), 1137–1151. https://doi.org/10.1111/febs.13208
  • Liu, H., Panjikar, S., Sheng, X., Futamura, Y., Zhang, C., Shao, N., Osada, H., & Zou, H. (2022). β-methyltryptamine provoking the crucial role of strictosidine synthase Tyr151-OH for its stereoselective pictet-spengler reactions to tryptoline-type alkaloids. ACS Chemical Biology, 17(1), 187–197. https://doi.org/10.1021/acschembio.1c00844
  • Loris, E. A., Panjikar, S., Ruppert, M., Barleben, L., Unger, M., Schübel, H., & Stöckigt, J. (2007). Structure-based engineering of strictosidine synthase: Auxiliary for alkaloid libraries. Chemistry & Biology, 14(9), 979–985. https://doi.org/10.1016/j.chembiol.2007.08.009
  • Ma, X., Panjikar, S., Koepke, J., Loris, E., & Stöckigt, J. (2006). The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed β-propeller fold in plant proteins. The Plant Cell, 18(4), 907–920. https://doi.org/10.1105/tpc.105.038018
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Maresh, J. J., Giddings, L. A., Friedrich, A., Loris, E. A., Panjikar, S., Trout, B. L., Stöckigt, J., Peters, B., & O’Connor, S. E. (2008). Strictosidine synthase: Mechanism of a pictet-spengler catalyzing enzyme. Journal of the American Chemical Society, 130(2), 710–723. https://doi.org/10.1021/ja077190z
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • McCoy, E., Galan, M. C., & O’Connor, S. E. (2006). Substrate specificity of strictosidine synthase. Bioorganic and Medicinal Chemistry Letters, 16(9), 2475–2478. https://doi.org/10.1016/j.bmcl.2006.01.098
  • McCoy, E., & O’Connor, S. E. (2006). Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus. Journal of the American Chemical Society, 128(44), 14276–14277. https://doi.org/10.1021/ja066787w
  • Mondal, J., Friesner, R. A., & Berne, B. J. (2014). Role of desolvation in thermodynamics and kinetics of ligand binding to a kinase. Journal of Chemical Theory and Computation, 10(12), 5696–5705. https://doi.org/10.1021/ct500584n
  • O’Connor, S. E. (2012). Strategies for engineering plant natural products. In Methods in enzymology (Vol. 515, pp. 189–206). Elsevier. https://doi.org/10.1016/B978-0-12-394290-6.00009-4
  • O’Connor, S. E., & Maresh, J. J. (2006). Chemistry and biology of monoterpene indole alkaloid biosynthesis. Natural Product Reports, 23(4), 532. https://doi.org/10.1039/b512615k
  • Pollier, J., Moses, T., & Goossens, A. (2011). Combinatorial biosynthesis in plants: A (p)review on its potential and future exploitation. Natural Product Reports, 28(12), 1897. https://doi.org/10.1039/c1np00049g
  • Pommier, Y. (2006). Topoisomerase I inhibitors: Camptothecins and beyond. Nature Reviews Cancer, 6(10), 789–802. https://doi.org/10.1038/nrc1977
  • Pressnitz, D., Fischereder, E.-M., Pletz, J., Kofler, C., Hammerer, L., Hiebler, K., Lechner, H., Richter, N., Eger, E., & Kroutil, W. (2018). Asymmetric synthesis of (R) ‐1‐alkyl‐substituted tetrahydro‐ß‐carbolines catalyzed by strictosidine synthases. Angewandte Chemie, 130(33), 10843–10847. https://doi.org/10.1002/ange.201803372
  • Rabbani, G., Ahmad, E., Khan, M. V., Ashraf, M. T., Bhat, R., & Khan, R. H. (2015). Impact of structural stability of cold adapted Candida antarctica lipase B (CaLB): In relation to pH, chemical and thermal denaturation. RSC Advances, 5(26), 20115–20131. https://doi.org/10.1039/C4RA17093H
  • Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., & Khan, R. H. (2012). PH-induced molten globule state of rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochemistry and Biophysics, 62(3), 487–499. https://doi.org/10.1007/s12013-011-9335-9
  • Rabbani, G., Ahmad, E., Zaidi, N., & Khan, R. H. (2011). PH-dependent conformational transitions in conalbumin (Ovotransferrin), a metalloproteinase from Hen Egg white. Cell Biochemistry and Biophysics, 61(3), 551–560. https://doi.org/10.1007/s12013-011-9237-x
  • Rabbani, G., Baig, M. H., Lee, E. J., Cho, W.-K., Ma, J. Y., & Choi, I. (2017). Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analyses. Molecular Pharmaceutics, 14(5), 1656–1665. https://doi.org/10.1021/acs.molpharmaceut.6b01124
  • Rabbani, G., Kaur, J., Ahmad, E., Khan, R. H., & Jain, S. K. (2014). Structural characteristics of thermostable immunogenic outer membrane protein from Salmonella enterica serovar Typhi. Applied Microbiology and Biotechnology, 98(6), 2533–2543. https://doi.org/10.1007/s00253-013-5123-3
  • Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics, 15(4), 1445–1456. https://doi.org/10.1021/acs.molpharmaceut.7b00976
  • Rajakumara, E., Abhishek, S., Nitin, K., Saniya, D., Bajaj, P., Schwaneberg, U., & Davari, M. D. (2022). Structure and cooperativity in substrate–enzyme interactions: Perspectives on enzyme engineering and inhibitor design. ACS Chemical Biology, 17(2), 266–280. https://doi.org/10.1021/acschembio.1c00500
  • Roddan, R., Ward, J. M., Keep, N. H., & Hailes, H. C. (2020). Pictet–spenglerases in alkaloid biosynthesis: Future applications in biocatalysis. Current Opinion in Chemical Biology, 55, 69–76. https://doi.org/10.1016/j.cbpa.2019.12.003
  • Runguphan, W., Maresh, J. J., & O’connor, S. E. (2009). Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture (pp. 13673–13678). www.pnas.org/cgi/content/full/
  • Runguphan, W., & O’Connor, S. E. (2009). Metabolic reprogramming of periwinkle plant culture. Nature Chemical Biology, 5(3), 151–153. https://doi.org/10.1038/nchembio.141
  • Runguphan, W., Qu, X., & O’Connor, S. E. (2010). Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature, 468(7322), 461–467. https://doi.org/10.1038/nature09524
  • Ruppert, M., Woll, J., Giritch, A., Genady, E., Ma, X., & Stöckigt, J. (2005). Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta, 222(5), 888–898. https://doi.org/10.1007/s00425-005-0031-0
  • Satish, M., Sandhya, K., Nitin, K., Yashas Kiran, N., Aleena, B., Satish Kumar, A. G. K., & Rajakumara, E. (2022). Computational, biochemical and ex vivo evaluation of xanthine derivatives against phosphodiesterases to enhance the sperm motility. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2022.2085802
  • Sheng, X., & Himo, F. (2020). Computational study of pictet-spenglerase strictosidine synthase: Reaction mechanism and origins of enantioselectivity of natural and non-natural substrates. ACS Catalysis, 10(22), 13630–13640. https://doi.org/10.1021/acscatal.0c03758
  • Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M., & Jensen, J. H. (2011). Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K a values. Journal of Chemical Theory and Computation, 7(7), 2284–2295. https://doi.org/10.1021/ct200133y
  • Stöckigt, J., Antonchick, A. P., Wu, F., & Waldmann, H. (2011). The pictet-spengler reaction in nature and in organic chemistry. Angewandte Chemie International Edition, 50(37), 8538–8564. https://doi.org/10.1002/anie.201008071
  • Straus, D. J., Johnson, J. L., LaCasce, A. S., Bartlett, N. L., Kostakoglu, L., Hsi, E. D., Schöder, H., Hall, N. C., Jung, S.-H., Canellos, G. P., Schwartz, L. H., Takvorian, R. W., Juweid, M. E., & Cheson, B. D. (2011). Doxorubicin, vinblastine, and gemcitabine (CALGB 50203) for stage I/II nonbulky Hodgkin lymphoma: Pretreatment prognostic factors and interim PET. Blood, 117(20), 5314–5320. https://doi.org/10.1182/blood-2010-10-314260
  • Toulmonde, M., Pulido, M., Ray-Coquard, I., Andre, T., Isambert, N., Chevreau, C., Penel, N., Bompas, E., Saada, E., Bertucci, F., Lebbe, C., Le Cesne, A., Soulie, P., Piperno-Neumann, S., Sweet, S., Cecchi, F., Hembrough, T., Bellera, C., Kind, M., … Italiano, A. (2019). Pazopanib or methotrexate–vinblastine combination chemotherapy in adult patients with progressive desmoid tumours (DESMOPAZ): A non-comparative, randomised, open-label, multicentre, phase 2 study. The Lancet Oncology, 20(9), 1263–1272. https://doi.org/10.1016/S1470-2045(19)30276-1
  • Wang, Y., & Mittermaier, A. K. (2021). Characterizing bi-substrate enzyme kinetics at high resolution by 2D-ITC. Analytical Chemistry, 93(37), 12723–12732. https://doi.org/10.1021/acs.analchem.1c02705
  • Wu, F., Zhu, H., Sun, L., Rajendran, C., Wang, M., Ren, X., Panjikar, S., Cherkasov, A., Zou, H., & Stöckigt, J. (2012). Scaffold tailoring by a newly detected pictet-spenglerase activity of strictosidine synthase: From the common tryptoline skeleton to the rare piperazino-indole framework. Journal of the American Chemical Society, 134(3), 1498–1500. https://doi.org/10.1021/ja211524d
  • Xia, L., Ruppert, M., Wang, M., Panjikar, S., Lin, H., Rajendran, C., Barleben, L., & Stöckigt, J. (2012). Structures of alkaloid biosynthetic glucosidases decode substrate specificity. ACS Chemical Biology, 7(1), 226–234. https://doi.org/10.1021/cb200267w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.