144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Retinoic acid shows direct parasiticidal activity by targeting ergosterol pathway in Leishmania donovani: a potential therapeutic advancement

ORCID Icon & ORCID Icon
Pages 14473-14483 | Received 21 Jul 2022, Accepted 12 Feb 2023, Published online: 28 Mar 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 16(1), 1–10. https://doi.org/10.1038/srep34984
  • Andersen, H. C. (1980). Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics, 72(4), 2384. https://doi.org/10.1063/1.439486
  • Arthington-Skaggs, B. A., Jradi, H., Desai, T., & Morrison, C. J. (1999). Quantitation of ergosterol content: Novel method for determination of fluconazole susceptibility of Candida albicans. Journal of Clinical Microbiology, 37(10), 3332–3337. https://doi.org/10.1128/JCM.37.10.3332-3337.1999/ASSET/9CE120F0-543F-45DA-9A4D-3B4EE0BF8505/ASSETS/GRAPHIC/JM1090562001.JPEG
  • Bekker, H., Berendsen, H. J. C., Dijkstra, E., Achterop, S., Vondrumen, R. v., Vanderspoel, D., Sijbers, A., Keegstra, H., Reitsma, B., & Renardus, M. (1993). GROMACS - A parallel computer for molecular-dynamics simulations. Physics Computing, 92, 252–256. https://doi.org/10.2/JQUERY.MIN.JS
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., & Lindahl, E. (2010). Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459–466. https://doi.org/10.1021/CT900549R
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164–170. https://doi.org/10.1126/SCIENCE.1853201
  • Chawla, B., & Madhubala, R. (2010). Drug targets in Leishmania. Journal of Parasitic Diseases, 34(1), 1–13. https://doi.org/10.1007/s12639-010-0006-3
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. http://www.pymol.org.
  • DNDi. (2022). Symptoms, transmission, and current treatments for visceral leishmaniasis. | https://dndi.org/diseases/visceral-leishmaniasis/facts/
  • Duthie, M. S., Goto, Y., Ghosh, P., & Mondal, D. (2019). Impact of sequelae of visceral leishmaniasis and their contribution to ongoing transmission of Leishmania donovani. Pathogens and Disease, 77(6), 57. https://doi.org/10.1093/FEMSPD/FTZ057
  • Errami, M., Geourjon, C., & Deléage, G. (2003). Detection of unrelated proteins in sequences multiple alignments by using predicted secondary structures. Bioinformatics, 19(4), 506–512. https://doi.org/10.1093/BIOINFORMATICS/BTG016
  • Galvão, E. L., Rabello, A., & Cota, G. F. (2017). Efficacy of azole therapy for tegumentary leishmaniasis: A systematic review and meta-analysis. PLoS One, 12(10), e0186117. https://doi.org/10.1371/JOURNAL.PONE.0186117
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In Walker, J.M. (Eds.), The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-890-0:571
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.
  • Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., & Shekhar, V. (2012). Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 13(Suppl 17), 1–13. https://doi.org/10.1186/1471-2105-13-S17-S7/FIGURES/7
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/NAR/GKY1033
  • Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/CI200227U
  • Leyden, J. J., Preston, N., Osborn, C., & Gottschalk, R. W. (2011). In-vivo effectiveness of adapalene 0.1%/benzoyl peroxide 2.5% gel on antibiotic-sensitive and resistant propionibacterium acnes. The Journal of Clinical and Aesthetic Dermatology, 4(5), 22.
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/J.DDTEC.2004.11.007
  • Lippert, T., & Rarey, M. (2009). Fast automated placement of polar hydrogen atoms in protein-ligand complexes. Journal of Cheminformatics, 1(1), 1–12. https://doi.org/10.1186/1758-2946-1-13/FIGURES/9
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Maciel, B. L. L., Valverde, J. G., Rodrigues-Neto, J. F., Freire-Neto, F., Keesen, T. S. L., & Jeronimo, S. M. B. (2014). Dual Immune modulatory effect of vitamin a in human visceral leishmaniasis. PLoS One, 9(9). https://doi.org/10.1371/journal.pone.0107564
  • Mitaku, S., & Hirokawa, T. (1999). Physicochemical factors for discriminating between soluble and membrane proteins: Hydrophobicity of helical segments and protein length. Protein Engineering, Design and Selection, 12(11), 953–957. https://doi.org/10.1093/PROTEIN/12.11.953
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An Open chemical toolbox. Journal of Cheminformatics, 3(10), 1–14. https://doi.org/10.1186/1758-2946-3-33/TABLES/2
  • Prakash, S., & Kumar Rai, A. (2022). Retinoic acid increases the cellular cholesterol predominantly in a mTOR-independent manner. Immunologic Research, 2022, 1–7. https://doi.org/10.1007/S12026-022-09292-X
  • Prakash, S., & Rai, A. K. (2022). Retinoic acid increases cellular cholesterol in Leishmania donovani-infected macrophages in an mTOR-independent manner. Microbiology Spectrum, 10(6), e0269922. https://doi.org/10.1128/SPECTRUM.02699-22
  • Prakash, S., Saini, S., Kumari, S., Singh, B., Kureel, A. K., & Rai, A. K. (2022). Retinoic acid restores the levels of cellular cholesterol in Leishmania donovani infected macrophages by increasing npc1 and npc2 expressions. Biochimie, 198, 23–32. https://doi.org/10.1016/J.BIOCHI.2022.03.002
  • Rusu, A., Tanase, C., Pascu, G. A., & Todoran, N. (2020). Recent advances regarding the therapeutic potential of adapalene. Pharmaceuticals, 13(9), 217. https://doi.org/10.3390/PH13090217
  • Saini, S., & Rai, A. K. (2020). Linoleic acid inhibits the release of Leishmania donovani derived microvesicles and decreases its survival in macrophages. Frontiers in Cellular and Infection Microbiology, 10, 406. https://doi.org/10.3389/FCIMB.2020.00406
  • Singh, N., Kumar, M., & Singh, R. K. (2012). Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine, 5(6), 485–497. https://doi.org/10.1016/S1995-7645(12)60084-4
  • Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 355–362. https://doi.org/10.1002/PROT.340170404
  • Sundar, S., & Chakravarty, J. (2010). Liposomal amphotericin B and leishmaniasis: Dose and response. Journal of Global Infectious Diseases, 2(2), 159–166. https://doi.org/10.4103/0974-777X.62886
  • Sundar, S., Chakravarty, J., & Meena, L. P. (2019). Leishmaniasis: Treatment, drug resistance and emerging therapies. Expert Opinion on Orphan Drugs, 7(1), 1–10. https://doi.org/10.1080/21678707.2019.1552853
  • Sundar, S., & Singh, B. (2018). Emerging therapeutic targets for treatment of leishmaniasis. Expert Opinion on Therapeutic Targets, 22(6), 467–486. https://doi.org/10.1080/14728222.2018.1472241
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/JCC.21334
  • Turner, J. C. (2005). Explaining the nature of power: A three-process theory. European Journal of Social Psychology, 35(1), 1–22. https://doi.org/10.1002/EJSP.244
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/JCC.20291
  • Verma, P., Kureel, A. K., Saini, S., Prakash, S., Kumari, S., Kottarath, S. K., Srivastava, S. K., Bhat, M., Dinda, A. K., Thakur, C. P., Sharma, S., & Rai, A. K. (2018). Leishmania donovani reduces the levels of retinoic acid–synthesizing enzymes in infected macrophages and favoring its own survival. Parasitology Research, 118(1), 63–71. https://doi.org/10.1007/S00436-018-6115-0
  • Wang, S., Sun, S., Li, Z., Zhang, R., & Xu, J. (2017). Accurate de novo prediction of protein contact map by ultra-deep learning model. PLOS Computational Biology, 13(1), e1005324. https://doi.org/10.1371/JOURNAL.PCBI.1005324
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427
  • WHO. (2022). Leishmaniasis: World Health Organization. https://www.who.int/health-topics/leishmaniasis#tab=tab_1
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(suppl_2), W407–W410. https://doi.org/10.1093/NAR/GKM290
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., MacIejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/NAR/GKX1037
  • Xu, J. (2019). Distance-based protein folding powered by deep learning. Proceedings of the National Academy of Sciences of the United States of America, 116(34), 16856–16865. https://doi.org/10.1073/PNAS.1821309116/-/DCSUPPLEMENTAL

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.