180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico exploration and molecular dynamics of deleterious SNPs on the human TERF1 protein triggering male infertility

ORCID Icon, , , , &
Pages 14665-14688 | Received 15 Nov 2022, Accepted 18 Feb 2023, Published online: 30 Mar 2023

References

  • AbdulAzeez, S., & Borgio, J. F. (2016). In-silico computing of the most deleterious nsSNPs in HBA1 gene. PLoS One, 11(1), e0147702. https://doi.org/10.1371/journal.pone.0147702
  • Adler, B. L., Boin, F., Wolters, P. J., Bingham, C. O., Shah, A. A., Greider, C., Casciola-Rosen, L., & Rosen, A. (2021). Autoantibodies targeting telomere-associated proteins in systemic sclerosis. Annals of the Rheumatic Diseases, 80(7), 912–919. https://doi.org/10.1136/annrheumdis-2020-218918
  • Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics, Chapter 7, Unit7.20.
  • Agnihotry, S., Pathak, R. K., Singh, D. B., Tiwari, A., & Hussain, I. (2022). Chapter 11 - Protein structure prediction. In: Singh DB, Pathak RK (Eds.), Bioinformatics (pp. 177–188). Academic Press. Available from: https://www.sciencedirect.com/science/article/pii/B9780323897754000237
  • Agrahari, A. K., Doss, G. P. C., Siva, R., Magesh, R., & Zayed, H. (2019). Molecular insights of the G2019S substitution in LRRK2 kinase domain associated with Parkinson’s disease: A molecular dynamics simulation approach. Journal of Theoretical Biology, 469, 163–171. https://doi.org/10.1016/j.jtbi.2019.03.003
  • Ait El Cadi, C., Krami, A. M., Charoute, H., Elkarhat, Z., Sifeddine, N., Lakhiari, H., Rouba, H., Barakat, A., & Nahili, H. (2020). Prediction of the impact of deleterious nonsynonymous single nucleotide polymorphisms on the human RRM2B gene: A molecular modeling study. BioMed Research International, 2020, 7614634. https://doi.org/10.1155/2020/7614634
  • Al Mehdi, K., Fouad, B., Zouhair, E., Boutaina, B., Yassine, N., Chaimaa, A. E. C., Najat, S., Hassan, R., Rachida, R., Abdelhamid, B., & Halima, N. (2019). Molecular modelling and dynamics study of nsSNP in STXBP1 gene in early infantile epileptic encephalopathy disease. BioMed Research International, 2019, 4872101. https://doi.org/10.1155/2019/4872101
  • Alhathal, N., Maddirevula, S., Coskun, S., Alali, H., Assoum, M., Morris, T., Deek, H. A., Hamed, S. A., Alsuhaibani, S., Mirdawi, A., Ewida, N., Al-Qahtani, M., Ibrahim, N., Abdulwahab, F., Altaweel, W., Dasouki, M. J., Assiri, A., Qabbaj, W., & Alkuraya, F. S. (2020). A genomics approach to male infertility. Genetics in Medicine: official Journal of the American College of Medical Genetics, 22(12), 1967–1975. https://doi.org/10.1038/s41436-020-0916-0
  • Ali, S. K., Sneha, P., Priyadharshini Christy, J., Zayed, H., & George Priya Doss, C. (2017). Molecular dynamics-based analyses of the structural instability and secondary structure of the fibrinogen gamma chain protein with the D356V mutation. Journal of Biomolecular Structure & Dynamics, 35(12), 2714–2724. https://doi.org/10.1080/07391102.2016.1229634
  • Amir, M., Khan, P., Queen, A., Dohare, R., Alajmi, M. F., Hussain, A., et al. (2020). Structural features of nucleoprotein CST/Shelterin complex involved in the telomere maintenance and its association with disease mutations. Cells, 9(2), 359. https://doi.org/10.3390/cells9020359
  • Amir, M., Kumar, V., Mohammad, T., Dohare, R., Hussain, A., Rehman, M. T., Alam, P., Alajmi, M. F., Islam, A., Ahmad, F., & Hassan, M. I. (2019a). Investigation of deleterious effects of nsSNPs in the POT1 gene: A structural genomics-based approach to understand the mechanism of cancer development. Journal of Cellular Biochemistry, 120(6), 10281–10294. https://doi.org/10.1002/jcb.28312
  • Amir, M., Kumar, V., Mohammad, T., Dohare, R., Rehman, M. T., Alajmi, M. F., et al. (2019b). Structural and functional impact of non-synonymous SNPs in the CST complex subunit TEN1: Structural genomics approach. Bioscience Reports, 39(5), BSR20190312.
  • Amir, M., Mohammad, T., Kumar, V., Alajmi, M. F., Rehman, M. T., Hussain, A., et al. (2019c). Structural analysis and conformational dynamics of STN1 gene mutations involved in Coat Plus Syndrome. Frontiers in Molecular Biosciences, 6, 41.
  • Aoude, L. G., Pritchard, A. L., Robles-Espinoza, C. D., Wadt, K., Harland, M., Choi, J., et al. (2015). Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. Journal of the National Cancer Institute, 107(2), dju408.
  • Asadi, A., Ghahremani, R., Abdolmaleki, A., & Rajaei, F. (2021). Role of sperm apoptosis and oxidative stress in male infertility: A narrative review. International Journal of Reproductive Biomedicine, 19(6), 493–504.
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–350. https://doi.org/10.1093/nar/gkw408
  • Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38(Web Server issue), W529–533. https://doi.org/10.1093/nar/gkq399
  • Balmori, C., & Varela, E. (2018). Should we consider telomere length and telomerase activity in male factor infertility? Current Opinion in Obstetrics & Gynecology, 30(3), 197–202. https://doi.org/10.1097/GCO.0000000000000451
  • Bazyka, D. A., Ilyenko, I. M., Loganovsky, K. N., Benotmane, M. A., & Chumak, S. A. (2014). TERF1 and TERF2 downregulate telomere length in cognitive deficit at the late period after low-dose exposure. Problemy Radiatsiĭnoï Medytsyny ta Radiobiolohiï, 19, 170–185.
  • Becerra-Muñoz, V. M., Gómez-Doblas, J. J., Porras-Martín, C., Such-Martínez, M., Crespo-Leiro, M. G., Barriales-Villa, R., de Teresa-Galván, E., Jiménez-Navarro, M., & Cabrera-Bueno, F. (2018). The importance of genotype-phenotype correlation in the clinical management of Marfan syndrome. Orphanet Journal of Rare Diseases, 13(1), 16. https://doi.org/10.1186/s13023-017-0754-6
  • Beg, M. A., Thakur, S. C., Meena., & L. S., Shivangi. (2018). Structural prediction and mutational analysis of Rv3906c gene of Mycobacterium tuberculosis H37Rv to determine its essentiality in survival. Advances in Bioinformatics, 2018, 6152014. https://doi.org/10.1155/2018/6152014
  • Bejarano, L., Schuhmacher, A. J., Méndez, M., Megías, D., Blanco-Aparicio, C., Martínez, S., Pastor, J., Squatrito, M., & Blasco, M. A. (2017). Inhibition of TRF1 telomere protein impairs tumor initiation and progression in glioblastoma mouse models and patient-derived xenografts. Cancer Cell, 32(5), 590–607.e4. https://doi.org/10.1016/j.ccell.2017.10.006
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Bianchi, A., Stansel, R. M., Fairall, L., Griffith, J. D., Rhodes, D., & de Lange, T. (1999). TRF1 binds a bipartite telomeric site with extreme spatial flexibility. The EMBO Journal, 18(20), 5735–5744. https://doi.org/10.1093/emboj/18.20.5735
  • Bisht, S., Faiq, M., Tolahunase, M., & Dada, R. (2017). Oxidative stress and male infertility. Nature Reviews. Urology, 14(8), 470–485. https://doi.org/10.1038/nrurol.2017.69
  • Calado, R. T., Savage, S. A., Lansdorp, P. M., Chanock, S. J., & Young, N. S. (2004). Genes encoding telomere-binding proteins TERF1, TERF2 and TIN2 are mutated in patients with acquired aplastic anemia. Blood, 104(11), 170. https://doi.org/10.1182/blood.V104.11.170.170
  • Cao, H., Zhai, Y., Ji, X., Wang, Y., Zhao, J., Xing, J., An, J., & Ren, T. (2020). Noncoding telomeric repeat-containing RNA inhibits the progression of hepatocellular carcinoma by regulating telomerase-mediated telomere length. Cancer Science, 111(8), 2789–2802. https://doi.org/10.1111/cas.14442
  • Capriotti, E., Fariselli, P., Calabrese, R., & Casadio, R. (2005). Predicting protein stability changes from sequences using support vector machines. Bioinformatics (Oxford, England), 21 Suppl 2, ii54–58. https://doi.org/10.1093/bioinformatics/bti1109
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue), W306–310. https://doi.org/10.1093/nar/gki375
  • Celniker, G., Nimrod, G., Ashkenazy, H., Glaser, F., Martz, E., Mayrose, I., et al. (2013). ConSurf: Using evolutionary data to raise testable hypotheses about protein function. Israel Journal of Chemistry, 53(3–4), 199–206. https://doi.org/10.1002/ijch.201200096
  • Charoute, H., Elkarhat, Z., Elkhattabi, L., El Fahime, E., Oukkache, N., Rouba, H., & Barakat, A. (2022). Computational screening of potential drugs against COVID-19 disease: the Neuropilin-1 receptor as molecular target. Virusdisease, 33(1), 23–31. https://doi.org/10.1007/s13337-021-00751-x
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Chen, C. W., Lin, M. H., Liao, C. C., Chang, H. P., & Chu, Y. W. (2020). iStable 2.0: Predicting protein thermal stability changes by integrating various characteristic modules. Computational and Structural Biotechnology Journal, 18, 622–630. https://doi.org/10.1016/j.csbj.2020.02.021
  • Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012). Predicting the functional effect of amino acid substitutions and indels. PLoS One, 7(10), e46688. https://doi.org/10.1371/journal.pone.0046688
  • Choudhury, A., Mohammad, T., Samarth, N., Hussain, A., Rehman, M. T., Islam, A., Alajmi, M. F., Singh, S., & Hassan, M. I. (2021). Structural genomics approach to investigate deleterious impact of nsSNPs in conserved telomere maintenance component 1. Scientific Reports, 11(1), 10202. https://doi.org/10.1038/s41598-021-89450-7
  • Cooper, G. M., Stone, E. A., Asimenos, G., Green, E. D., Batzoglou, S., & Sidow, A. (2005). Distribution and intensity of constraint in mammalian genomic sequence. Genome Research, 15(7), 901–913. https://doi.org/10.1101/gr.3577405
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Research, 34(Web Server issue):W239–42. https://pubmed.ncbi.nlm.nih.gov/16845001/
  • da Cruz, I., Brochier-Armanet, C., & Benavente, R. (2020). The TERB1-TERB2-MAJIN complex of mouse meiotic telomeres dates back to the common ancestor of metazoans. BMC Evolutionary Biology, 20(1), 55. https://doi.org/10.1186/s12862-020-01612-9
  • Davydov, E. V., Goode, D. L., Sirota, M., Cooper, G. M., Sidow, A., & Batzoglou, S. (2010). Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Computational Biology, 6(12), e1001025. https://doi.org/10.1371/journal.pcbi.1001025
  • de Lange, T. (2005). Shelterin: The protein complex that shapes and safeguards human telomeres. Genes & Development, 19(18), 2100–2110. https://doi.org/10.1101/gad.1346005
  • Dos Santos, G. A., Viana, N. I., Pimenta, R., Guimarães, V. R., de Camargo, J. A., Romão, P., Reis, S. T., Leite, K. R. M., & Srougi, M. (2021). Prognostic value of TERF1 expression in prostate cancer. Journal of the Egyptian National Cancer Institute, 33(1), 24. https://doi.org/10.1186/s43046-021-00082-4
  • Dunce, J. M., Milburn, A. E., Gurusaran, M., da Cruz, I., Sen, L. T., Benavente, R., & Davies, O. R. (2018). Structural basis of meiotic telomere attachment to the nuclear envelope by MAJIN-TERB2-TERB1. Nature Communications, 9(1), 5355. https://doi.org/10.1038/s41467-018-07794-7
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9, 71. https://doi.org/10.1186/1741-7007-9-71
  • Elkhattabi, L., Morjane, I., Charoute, H., Amghar, S., Bouafi, H., Elkarhat, Z., Saile, R., Rouba, H., & Barakat, A. (2019). In silico analysis of coding/noncoding snps of human RETN gene and characterization of their impact on resistin stability and structure. Journal of Diabetes Research, 2019, 4951627. https://doi.org/10.1155/2019/4951627
  • Falsafi-Zadeh, S., Karimi, Z., & Galehdari, H. (2012). VMD DisRg: New user-friendly implement for calculation distance and radius of gyration in VMD program. Bioinformation, 8(7), 341–343. https://doi.org/10.6026/97320630008341
  • Fernandez, N., Chua, M., Villanueva, J., Varela, D., Bagli, D., & Shnorhavorian, M. (2023). Neural network non-linear modeling to predict hypospadias genotype-phenotype correlation. Journal of Pediatric Urology. https://www.sciencedirect.com/science/article/pii/S147751312300013X https://doi.org/10.1016/j.jpurol.2023.01.005
  • Frank, A. K., Tran, D. C., Qu, R. W., Stohr, B. A., Segal, D. J., & Xu, L. (2015). The Shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLoS Genetics, 11(7), e1005410. https://doi.org/10.1371/journal.pgen.1005410
  • Genotype Phenotype Correlation - an overview. | ScienceDirect Topics [Internet]. https://www.sciencedirect.com/topics/medicine-and-dentistry/genotype-phenotype-correlation
  • George Priya Doss, C., & Zayed, H. (2017). Comparative computational assessment of the pathogenicity of mutations in the Aspartoacylase enzyme. Metabolic Brain Disease, 32(6), 2105–2118. https://doi.org/10.1007/s11011-017-0090-5
  • Gupta, P., Khan, S., Fakhar, Z., Hussain, A., Rehman, M. T., AlAjmi, M. F., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Identification of potential inhibitors of calcium/calmodulin-dependent protein kinase IV from bioactive phytoconstituents. Oxidative Medicine and Cellular Longevity, 2020, 2094635–2094614. https://doi.org/10.1155/2020/2094635
  • Gurusaran, M., & Davies, O. R. (2021). A molecular mechanism for LINC complex branching by structurally diverse SUN-KASH 6:6 assemblies. Elife, 10, e60175. https://doi.org/10.7554/eLife.60175
  • Habib, I., Khan, S., Mohammad, T., Hussain, A., Alajmi, M. F., Rehman, T., et al. (2021). Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2021.1922313
  • Harmak, H., Charoute, H., Redouane, S., Filali, O. A., Barakat, A., & Rouba, H. (2022). Computational analysis of the potential impact of MTC complex missenses SNPs associated with male infertility. BioMed Research International, 2022, 1664825. https://doi.org/10.1155/2022/1664825
  • Harton, G. L., & Tempest, H. G. (2012). Chromosomal disorders and male infertility. Asian Journal of Andrology, 14(1), 32–39. https://doi.org/10.1038/aja.2011.66
  • Herrero, J., Muffato, M., Beal, K., Fitzgerald, S., Gordon, L., Pignatelli, M., et al. (2016). Ensembl comparative genomics resources. Database (Oxford), 2016, bav096. https://doi.org/10.1093/database/bav096
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8, 37–47.
  • Howe, K. L., Achuthan, P., Allen, J., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., Azov, A. G., Bennett, R., Bhai, J., Billis, K., Boddu, S., Charkhchi, M., Cummins, C., Da Rin Fioretto, L., Davidson, C., Dodiya, K., El Houdaigui, B., Fatima, R., … Flicek, P. (2021). Ensembl 2021. Nucleic Acids Research, 49(D1), D884–D891. https://doi.org/10.1093/nar/gkaa942
  • Huber, C. D., Kim, B. Y., & Lohmueller, K. E. (2020 May 29). Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. PLoS Genetics, 16(5), e1008827. https://doi.org/10.1371/journal.pgen.1008827
  • Hunt, S. E., McLaren, W., Gil, L., Thormann, A., Schuilenburg, H., & Sheppard, D. (2018). Ensembl variation resources. Database, 2018. https://doi.org/10.1093/database/bay119
  • Iwano, T., Tachibana, M., Reth, M., & Shinkai, Y. (2004). Importance of TRF1 for functional telomere structure. The Journal of Biological Chemistry, 279(2), 1442–1448. https://doi.org/10.1074/jbc.M309138200
  • Khan, S., Bjij, I., Betz, R. M., & Soliman, M. E. (2018). Reversible versus irreversible inhibition modes of ERK2: A comparative analysis for ERK2 protein kinase in cancer therapy. Future Medicinal Chemistry, 10(9), 1003–1015. https://doi.org/10.4155/fmc-2017-0275
  • Kong, C. M., Lee, X. W., & Wang, X. (2013). Telomere shortening in human diseases. The FEBS Journal, 280(14), 3180–3193. https://doi.org/10.1111/febs.12326
  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 77(Suppl 9), 114–122. https://doi.org/10.1002/prot.22570
  • Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4(7), 1073–1081. https://doi.org/10.1038/nprot.2009.86
  • Kumari, P., & Rameshwari, R. (2022). In silico mutational analysis to identify the role and pathogenicity of BCL-w missense variants. Journal, Genetic Engineering & Biotechnology, 20(1), 120. https://doi.org/10.1186/s43141-022-00389-2
  • Kuroda, S., Usui, K., Sanjo, H., Takeshima, T., Kawahara, T., Uemura, H., & Yumura, Y. (2020). Genetic disorders and male infertility. Reproductive Medicine and Biology, 19(4), 314–322. https://doi.org/10.1002/rmb2.12336
  • Laskowski, R. A. (2007). Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature. Bioinformatics (Oxford, England), 23(14), 1824–1827. https://doi.org/10.1093/bioinformatics/btm085
  • Leisegang, K., Sengupta, P., Agarwal, A., & Henkel, R. (2021). Obesity and male infertility: Mechanisms and management. Andrologia, 53(1), e13617. https://doi.org/10.1111/and.13617
  • Lim, C. J., & Cech, T. R. (2021). Shaping human telomeres: From shelterin and CST complexes to telomeric chromatin organization. Nature Reviews. Molecular Cell Biology, 22(4), 283–298. https://doi.org/10.1038/s41580-021-00328-y
  • Lim, C. J., Zaug, A. J., Kim, H. J., & Cech, T. R. (2017). Reconstitution of human shelterin complexes reveals unexpected stoichiometry and dual pathways to enhance telomerase processivity. Nature Communications, 8(1), 1075. https://doi.org/10.1038/s41467-017-01313-w
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Lobanov, M. I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706. https://doi.org/10.1134/S0026893308040195
  • Long, J., Huang, C., Chen, Y., Zhang, Y., Shi, S., Wu, L., Liu, Y., Liu, C., Wu, J., & Lei, M. (2017). Telomeric TERB1–TRF1 interaction is crucial for male meiosis. Nature Structural & Molecular Biology, 24(12), 1073–1080. https://doi.org/10.1038/nsmb.3496
  • Lopes, A. C., Oliveira, P. F., & Sousa, M. (2019). Shedding light into the relevance of telomeres in human reproduction and male factor infertility†. Biology of Reproduction, 100(2), 318–330. https://doi.org/10.1093/biolre/ioy215
  • López-Ferrando, V., Gazzo, A., de la Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Research, 45(W1), W222–W228. https://doi.org/10.1093/nar/gkx313
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry. B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Mamonova, T., Hespenheide, B., Straub, R., Thorpe, M. F., & Kurnikova, M. (2005). Protein flexibility using constraints from molecular dynamics simulations. Physical Biology, 2(4), S137–S47. https://doi.org/10.1088/1478-3975/2/4/S08
  • Marsh, J. A., & Teichmann, S. A. (2015). Structure, dynamics, assembly, and evolution of protein complexes. Annual Review of Biochemistry, 84, 551–575. https://doi.org/10.1146/annurev-biochem-060614-034142
  • Martínez, P., & Blasco, M. A. (2011). Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nature Reviews. Cancer, 11(3), 161–176. https://doi.org/10.1038/nrc3025
  • McGriff, S. C., Lo, E. M., Hotaling, J. M., & Pastuszak, A. W. (2020). Optimal endocrine evaluation and treatment of male infertility. The Urologic Clinics of North America, 47(2), 139–146. https://doi.org/10.1016/j.ucl.2019.12.002
  • McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., Flicek, P., & Cunningham, F. (2016). The ensembl variant effect predictor. Genome Biology, 17(1), 122. https://doi.org/10.1186/s13059-016-0974-4
  • Morimoto, A., Shibuya, H., Zhu, X., Kim, J., Ishiguro, K-i., Han, M., & Watanabe, Y. (2012). A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. The Journal of Cell Biology, 198(2), 165–172. https://doi.org/10.1083/jcb.201204085
  • Naasse, Y., Charoute, H., El Houate, B., Elbekkay, C., Razoki, L., Malki, A., Barakat, A., & Rouba, H. (2015). Chromosomal abnormalities and Y chromosome microdeletions in infertile men from Morocco. BMC Urology, 15, 95. https://doi.org/10.1186/s12894-015-0089-3
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Oh, B. K., Kim, Y. J., Park, C., & Park, Y. N. (2005). Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. The American Journal of Pathology, 166(1), 73–80. https://doi.org/10.1016/S0002-9440(10)62233-X
  • Panner Selvam, M. K., Ambar, R. F., Agarwal, A., & Henkel, R. (2021). Etiologies of sperm DNA damage and its impact on male infertility. Andrologia, 53(1), e13706. https://doi.org/10.1111/and.13706
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H.-J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 5918. https://doi.org/10.1038/s41467-020-19669-x
  • Pendlebury, D. F., Fujiwara, Y., Tesmer, V. M., Smith, E. M., Shibuya, H., Watanabe, Y., & Nandakumar, J. (2017). Dissecting the telomere-inner nuclear membrane interface formed in meiosis. Nature Structural & Molecular Biology, 24(12), 1064–1072. https://doi.org/10.1038/nsmb.3493
  • Pérez, A., Luque, F. J., & Orozco, M. (2012). Frontiers in molecular dynamics simulations of DNA. Accounts of Chemical Research, 45(2), 196–205. https://doi.org/10.1021/ar2001217
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014a). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(Web Server issue), W314–9. https://doi.org/10.1093/nar/gku411
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014b). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford, England), 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Research, 39, e118. https://academic.oup.com/nar/article/39/17/e118/2411278?login=false
  • Prosdocimi, F. (2007) The codon usage of Leucine, Serine and Arginine reveals evolutionary stability of proteomes and protein-coding genes. biotec.icb.ufmg.br [Internet]. [https://www.academia.edu/546349/The_codon_usage_of_Leucine_Serine_and_Arginine_reveals_evolutionary_stability_of_proteomes_and_protein_coding_genes
  • Ramachandran, G. N., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–438.
  • Raynal, C., & Corvol, H. (2020). Variant classifications, databases and genotype-phenotype correlations. Archives de Pédiatrie, 27, eS13–8. https://doi.org/10.1016/S0929-693X(20)30045-2
  • Reig-Viader, R., Garcia-Caldés, M., & Ruiz-Herrera, A. (2016). Telomere homeostasis in mammalian germ cells: a review. Chromosoma, 125(2), 337–351. https://doi.org/10.1007/s00412-015-0555-4
  • Reva, B., Antipin, Y., & Sander, C. (2007). Determinants of protein function revealed by combinatorial entropy optimization. Genome Biology, 8(11), R232. https://doi.org/10.1186/gb-2007-8-11-r232
  • Rice, C., & Skordalakes, E. (2016). Structure and function of the telomeric CST complex. Computational and Structural Biotechnology Journal, 14, 161–167. https://doi.org/10.1016/j.csbj.2016.04.002
  • Ries, M., & Gal, A. (2006). Genotype–phenotype correlation in Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (Eds.), Fabry disease: Perspectives from 5 years of FOS. Oxford PharmaGenesis. http://www.ncbi.nlm.nih.gov/books/NBK11584/
  • Rothballer, A., Schwartz, T. U., & Kutay, U. (2013). LINCing complex functions at the nuclear envelope: What the molecular architecture of the LINC complex can reveal about its function. Nucleus (Austin, Tex.), 4(1), 29–36. https://doi.org/10.4161/nucl.23387
  • Saih, A., Bouqdayr, M., Baba, H., Hamdi, S., Moussamih, S., Bennani, H., Saile, R., Wakrim, L., & Kettani, A. (2021). Computational analysis of missense variants in the human transmembrane protease serine 2 (TMPRSS2) and SARS-CoV-2. BioMed Research International, 2021, 9982729. https://doi.org/10.1155/2021/9982729
  • Salas-Huetos, A., Tüttelmann, F., Wyrwoll, M. J., Kliesch, S., Lopes, A. M., Goncalves, J., Boyden, S. E., Wöste, M., Hotaling, J. M., Nagirnaja, L., Conrad, D. F., Carrell, D. T., & Aston, K. I., (2021). Disruption of human meiotic telomere complex genes TERB1, TERB2 and MAJIN in men with non-obstructive azoospermia. Human Genetics, 140(1), 217–227. https://doi.org/10.1007/s00439-020-02236-1
  • Salvatore, F., Scudiero, O., & Castaldo, G. (2002). Genotype–phenotype correlation in cystic fibrosis: The role of modifier genes. American Journal of Medical Genetics, 111(1), 88–95. https://doi.org/10.1002/ajmg.10461
  • Savage, S. A., Calado, R. T., Xin, Z. T., Ly, H., Young, N. S., & Chanock, S. J. (2006). Genetic variation in telomeric repeat binding factors 1 and 2 in aplastic anemia. Experimental Hematology, 34(5), 664–671. https://doi.org/10.1016/j.exphem.2006.02.008
  • Scherthan, H. (2007). Telomere attachment and clustering during meiosis. Cellular and Molecular Life Sciences : CMLS, 64(2), 117–124. https://doi.org/10.1007/s00018-006-6463-2
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Selvanathan, S. K., Shenton, A., Ferner, R., Wallace, A. J., Huson, S. M., Ramsden, R. T., & Evans, D. G. (2010). Further genotype – phenotype correlations in neurofibromatosis 2. Clinical Genetics, 77(2), 163–170. https://doi.org/10.1111/j.1399-0004.2009.01315.x
  • Sharma, A., Minhas, S., Dhillo, W. S., & Jayasena, C. N. (2021). Male infertility due to testicular disorders. The Journal of Clinical Endocrinology and Metabolism, 106(2), e442–59–e459. https://doi.org/10.1210/clinem/dgaa781
  • Shibuya, H. (2014). The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. 16(2), 21.
  • Shibuya, H., Hernández-Hernández, A., Morimoto, A., Negishi, L., Höög, C., & Watanabe, Y. (2015). MAJIN links telomeric DNA to the nuclear membrane by exchanging telomere cap. Cell, 163(5), 1252–1266. https://doi.org/10.1016/j.cell.2015.10.030
  • Stewart, J. A., Wang, Y., Ackerson, S. M., & Schuck, P. L. (2018). Emerging roles of CST in maintaining genome stability and human disease. Frontiers in Bioscience (Landmark Edition), 23(8), 1564–1586. https://doi.org/10.2741/4661
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. v (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Takai, K. K., Kibe, T., Donigian, J. R., Frescas, D., & de Lange, T. (2011). Telomere protection by TPP1/POT1 requires tethering to TIN2. Molecular Cell, 44(4), 647–659. https://doi.org/10.1016/j.molcel.2011.08.043
  • Takeshima, T., Usui, K., Mori, K., Asai, T., Yasuda, K., Kuroda, S., & Yumura, Y. (2021). Oxidative stress and male infertility. Reproductive Medicine and Biology, 20(1), 41–52. https://doi.org/10.1002/rmb2.12353
  • The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. | Elsevier Enhanced Reader [Internet]. (2021). https://reader.elsevier.com/reader/sd/pii/S0022283615005379?token=B5A9DC0B134473C2F5D2740CD38EFF06A318FA9663BADF38809EF61FDEC52A3FA16A160F1E332100FA633DDA4A5CE0BA&originRegion=eu-west-1&originCreation=20210509124226
  • Thilagavathi, J., Venkatesh, S., & Dada, R. (2013). Telomere length in reproduction. Andrologia, 45(5), 289–304. https://doi.org/10.1111/and.12008
  • Thirumal Kumar, D., Eldous, H. G., Mahgoub, Z. A., George Priya Doss, C., & Zayed, H. (2018). Computational modelling approaches as a potential platform to understand the molecular genetics association between Parkinson’s and Gaucher diseases. Metabolic Brain Disease, 33(6), 1835–1847. https://doi.org/10.1007/s11011-018-0286-3
  • Turner, K. J., Vasu, V., & Griffin, D. K. (2019). Telomere biology and human phenotype. Cells, 8(1), E73. https://doi.org/10.3390/cells8010073
  • Uzay, E., Kızılay, F., Altay, B., Akın, H., & Durmaz, M. B. (2021). Investigation of genotype–phenotype correlation in patients with AZF microdeletion in a single-reference centre. Andrologia, 53(10), e14188. https://doi.org/10.1111/and.14188
  • van Waning, J. I., Moesker, J., Heijsman, D., Boersma, E., & Majoor‐Krakauer, D. (2019). Systematic review of genotype‐phenotype correlations in noncompaction cardiomyopathy. Journal of the American Heart Association, 8(23), e012993. https://doi.org/10.1161/JAHA.119.012993
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. Feb 22https://doi.org/10.1016/j.jmb.2015.09.014
  • Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M., & Ng, P. C. (2016). SIFT missense predictions for genomes. Nature Protocols, 11(1), 1–9. https://doi.org/10.1038/nprot.2015.123
  • Vertika, S., Singh, K. K., & Rajender, S. (2020). Mitochondria, spermatogenesis, and male infertility - An update. Mitochondrion, 54, 26–40. Sephttps://doi.org/10.1016/j.mito.2020.06.003
  • Vilkeviciute, A., Gedvilaite, G., Banevicius, M., Kriauciuniene, L., Zaliuniene, D., Dobiliene, O., et al. (2022). Relative leukocyte telomere length and genetic variants in telomere-related genes and serum levels role in age-related macular degeneration. Cells, 11(23), 3847. https://doi.org/10.3390/cells11233847
  • Wang, S., Li, W., Liu, S., & Xu, J. (2016). RaptorX-Property: A web server for protein structure property prediction. Nucleic Acids Research, 44(W1). https://pubmed.ncbi.nlm.nih.gov/27112573/
  • Wang, Y., Chen, Y., Chen, J., Wang, L., Nie, L., Long, J., Chang, H., Wu, J., Huang, C., & Lei, M. (2019). The meiotic TERB1-TERB2-MAJIN complex tethers telomeres to the nuclear envelope. Nature Communications, 10(1), 564. https://doi.org/10.1038/s41467-019-08437-1
  • Wang, D., Liu, D., Yuchi, J., He, F., Jiang, Y., Cai, S., Li, J., & Xu, D. (2020). MusiteDeep: A deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Research, 48(W1), W140–W146. https://doi.org/10.1093/nar/gkaa275
  • Wang, S., Peng, J., Ma, J., & Xu, J. (2016). Protein secondary structure prediction using deep convolutional neural fields. Scientific Reports, 6(1), 18962. https://doi.org/10.1038/srep18962
  • Wang, L., Tu, Z., Liu, C., Liu, H., Kaldis, P., Chen, Z., & Li, W. (2018). Dual roles of TRF1 in tethering telomeres to the nuclear envelope and protecting them from fusion during meiosis. Cell Death and Differentiation, 25(6), 1174–1188. https://doi.org/10.1038/s41418-017-0037-8
  • Wang, W., Xia, M., Chen, J., Deng, F., Yuan, R., Zhang, X., & Shen, F. (2016). Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum. Data in Brief, 9, 345–348. https://doi.org/10.1016/j.dib.2016.05.025
  • Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G. D., & Morris, Q. (2010). The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research, 38(Web Server issue), W214–220. https://doi.org/10.1093/nar/gkq537
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Worth, C. L., Preissner, R., & Blundell, T. L. (2011). SDM–a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 39(Web Server issue), W215–22. https://doi.org/10.1093/nar/gkr363
  • Wu, Q., Han, D., Zhang, J., & Li, X. (2019). Expression of telomere repeat binding factor 1 and TRF2 in Alzheimer’s disease and correlation with clinical parameters. Neurological Research, 41(6), 504–509. https://doi.org/10.1080/01616412.2019.1580456
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics. https://doi.org/10.1093/bioinformatics/btw514
  • Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., Hönigschmid, P., Schafferhans, A., Roos, M., Bernhofer, M., Richter, L., Ashkenazy, H., Punta, M., Schlessinger, A., Bromberg, Y., Schneider, R., Vriend, G., Sander, C., Ben-Tal, N., & Rost, B. (2014). PredictProtein–an open resource for online prediction of protein structural and functional features. Nucleic Acids Research, 42(Web Server issue), W337–343. https://doi.org/10.1093/nar/gku366
  • Yan, P., He, Y., Xie, K., Kong, S., & Zhao, W. (2018). In silico analyses for potential key genes associated with gastric cancer. PeerJ, 6, e6092. https://doi.org/10.7717/peerj.6092
  • Yue, P., & Moult, J. (2006). Identification and analysis of deleterious human SNPs. Journal of Molecular Biology, 356(5), 1263–1274. https://doi.org/10.1016/j.jmb.2005.12.025
  • Zaki, O. K., Krishnamoorthy, N., El Abd, H. S., Harche, S. A., Mattar, R. A., Al Disi, R. S., Nofal, M. Y., El Bekay, R., Ahmed, K. A., George Priya Doss, C., & Zayed, H. (2017). Two patients with Canavan disease and structural modeling of a novel mutation. Metabolic Brain Disease, 32(1), 171–177. https://doi.org/10.1007/s11011-016-9896-9
  • Zaki, O. K., Priya Doss C, G., Ali, S. A., Murad, G. G., Elashi, S. A., Ebnou, M. S. A., Kumar D, T., Khalifa, O., Gamal, R., El Abd, H. S. A., Nasr, B. N., & Zayed, H. (2017). Genotype-phenotype correlation in patients with isovaleric acidaemia: Comparative structural modelling and computational analysis of novel variants. Human Molecular Genetics, 26(16), 3105–3115.
  • Zinder, J. C., Olinares, P. D. B., Svetlov, V., Bush, M. W., Nudler, E., Chait, B. T., Walz, T., & de Lange, T. (2022). Shelterin is a dimeric complex with extensive structural heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 119(31), e2201662119. https://doi.org/10.1073/pnas.2201662119

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.