237
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Conformational dynamics of A30G α-synuclein that causes familial Parkinson disease

ORCID Icon & ORCID Icon
Pages 14702-14714 | Received 10 Dec 2022, Accepted 25 Feb 2023, Published online: 24 Mar 2023

References

  • Akbayrak, I. Y., Caglayan, S. I., Ozcan, Z., Uversky, V. N., & Coskuner-Weber, O. (2021). Current challenges and limitations in the studies of intrinsically disordered proteins in neurodegenerative diseases by computer simulations. Current Alzheimer Research, 17(9), 805–818. https://doi.org/10.2174/1567205017666201109094908
  • Appel-Cresswell, S., Vilarino-Guell, C., Encarnacion, M., Sherman, H., Yu, I., Shah, B., Weir, D., Thompson, C., Szu-Tu, C., Trinh, J., Aasly, J. O., Rajput, A., Rajput, A. H., Stoessl, A. J., & Farrer, M. J. (2013). Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Movement Disorders, 28(6), 811–813. https://doi.org/10.1002/mds.25421
  • Balestrino, R., & Schapira, A. H. V. (2020). Parkinson disease. European Journal of Neurology, 27(1), 27–42. https://doi.org/10.1111/ene.14108
  • Barlow, D. J., & Thornton, J. M. (1988). Helix geometry in proteins. Journal of Molecular Biology, 201(3), 601–619. https://doi.org/10.1016/0022-2836(88)90641-9
  • Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica Section D Biological Crystallography, 58(6), 899–907. https://doi.org/10.1107/S0907444902003451
  • Bhardwaj, V. K., Oakley, A., & Purohit, R. (2022). Mechanistic behaviour and subtle key events during DNA clamp opening and closing in T4 Bacteriophage. International Journal of Biological Macromolecules, 208, 11–19. https://doi.org/10.1016/j.ijbiomac.2022.03.021
  • Bhardwaj, V. K., & Purohit, R. (2022). A lesson for the maestro of the replication fork: Targeting the protein‐binding interface of proliferating cell nuclear antigen for anticancer therapy. Journal of Cellular Biochemistry, 123(6), 1091–1102. https://doi.org/10.1002/jcb.30265
  • Blauwendraat, C., Kia, D. A., Pihlstrøm, L., Gan-Or, Z., Lesage, S., Gibbs, J. R., Ding, J., Alcalay, R. N., Baer, S. H., Pittman, A. M., Brooks, J., Edsall, C., Chung, S. J., Goldwurm, S., Toft, M., Schulte, C., Hernandez, D., Singleton, A. B., Nalls, M. A., … Wood, N. W. (2018). Insufficient evidence for pathogenicity of SNCA His50Gln (H50Q) in Parkinson’s disease. Neurobiology of Aging, 64, 159.e5–159.e8. https://doi.org/10.1016/j.neurobiolaging.2017.12.012
  • Bodner, C. R., Dobson, C. M., & Bax, A. (2009). Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. Journal of Molecular Biology, 390(4), 775–790. https://doi.org/10.1016/j.jmb.2009.05.066
  • Burre, J. (2015). The synaptic function of α-synuclein. Journal of Parkinson’s Disease, 5(4), 699–713. https://doi.org/10.3233/JPD-150642
  • Campioni, S., Carret, G., Jordens, S., Nicoud, L., Mezzenga, R., & Riek, R. (2014). The presence of an air–water interface affects formation and elongation of α-synuclein fibrils. Journal of the American Chemical Society, 136(7), 2866–2875. https://doi.org/10.1021/ja412105t
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server), W306–W310. https://doi.org/10.1093/nar/gki375
  • Cascella, R., Perni, M., Chen, S. W., Fusco, G., Cecchi, C., Vendruscolo, M., Chiti, F., Dobson, C. M., & De Simone, A. (2019). Probing the origin of the toxicity of oligomeric aggregates of α-synuclein with antibodies. ACS Chemical Biology, 14(6), 1352–1362. https://doi.org/10.1021/acschembio.9b00312
  • Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., III, Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghoreishi, D., Gilson, M. K., Gohlke, H., Goetz, A. W., Greene, D., Harris, R., Homeyer, N., Huang, Y., Izadi, S., Kovalenko, A., Kurtzman, T., … Kollman, P. A. (2018). AMBER 2018. University of California.
  • Cheng, J., Randall, A., & Baldi, P. (2005). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins: Structure, Function, and Bioinformatics, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Chen, Y., Gu, X., Ou, R., Zhang, L., Hou, Y., Liu, K., Cao, B., Wei, Q., Li, C., Song, W., Zhao, B., Wu, Y., Cheng, J., & Shang, H. (2020). Evaluating the role of snca, lrrk2, and gba in Chinese patients with early‐onset Parkinson’s disease. Movement Disorders, 35(11), 2046–2055. https://doi.org/10.1002/mds.28191
  • Chen, Y., Lu, H., Zhang, N., Zhu, Z., Wang, S., & Li, M. (2020). PremPS: Predicting the impact of missense mutations on protein stability. PLOS Computational Biology, 16(12), e1008543. https://doi.org/10.1371/journal.pcbi.1008543
  • Darden, T., York, D., & Pedersen, L. (1993). Particle Mesh Ewald: Ann⋅log(n) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dhiman, A., & Purohit, R. (2022). Identification of potential mutational hotspots in serratiopeptidase to address its poor pH tolerance issue. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2022.2137699
  • Eliezer, D., Kutluay, E., Bussell, R., & Browne, G. (2001). Conformational properties of α-synuclein in its free and lipid-associated states, edited by P. E. Wright. Journal of Molecular Biology, 307(4), 1061–1073. https://doi.org/10.1006/jmbi.2001.4538
  • Fusco, G., De Simone, A., Gopinath, T., Vostrikov, V., Vendruscolo, M., Dobson, C. M., & Veglia, G. (2014). Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nature Communications, 5(1) https://doi.org/10.1038/ncomms4827
  • Fusco, G., Sanz-Hernandez, M., & De Simone, A. (2018). Order and disorder in the physiological membrane binding of α-synuclein. Current Opinion in Structural Biology, 48, 49–57. https://doi.org/10.1016/j.sbi.2017.09.004
  • Fusco, G., Pape, T., Stephens, A. D., Mahou, P., Costa, A. R., Kaminski, C. F., Schierle, G. S. K., Vendruscolo, M., Veglia, G., Dobson, C. M., & De Simone, A. (2016). Structural basis of synaptic vesicle assembly promoted by α-Synuclein. Nature Communications, 7(1) https://doi.org/10.1038/ncomms12563
  • Galvagnion, C., Brown, J. W., Ouberai, M. M., Flagmeier, P., Vendruscolo, M., Buell, A. K., Sparr, E., & Dobson, C. M. (2016). Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proceedings of the National Academy of Sciences, 113(26), 7065–7070. https://doi.org/10.1073/pnas.1601899113
  • Galvagnion, C., Buell, A. K., Meisl, G., Michaels, T. C., Vendruscolo, M., Knowles, T. P., & Dobson, C. M. (2015). Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nature Chemical Biology, 11(3), 229–234. https://doi.org/10.1038/nchembio.1750
  • Gasteiger, E. (2003). Expasy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • Giasson, B. I., Murray, I. V. J., Trojanowski, J. Q., & Lee, V. M.-Y. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament Assembly. Journal of Biological Chemistry, 276(4), 2380–2386. https://doi.org/10.1074/jbc.M008919200
  • Gonzalez-Garcia, M., Fusco, G., & De Simone, A. (2021). Membrane interactions and toxicity by misfolded protein oligomers. Frontiers in Cell and Developmental Biology, 9 https://doi.org/10.3389/fcell.2021.642623
  • Grey, M., Dunning, C. J., Gaspar, R., Grey, C., Brundin, P., Sparr, E., & Linse, S. (2015). Acceleration of α-synuclein aggregation by exosomes. The Journal of Biological Chemistry, 290(5), 2969–2982. https://doi.org/10.1074/jbc.m114.585703
  • Henriques, J., Cragnell, C., & Skepö, M. (2015). Molecular dynamics simulations of intrinsically disordered proteins: Force field evaluation and comparison with experiment. Journal of Chemical Theory and Computation, 11(7), 3420–3431. https://doi.org/10.1021/ct501178z
  • Hills, R. D., & McGlinchey, N. (2016). Model parameters for simulation of physiological lipids. Journal of Computational Chemistry, 37(12), 1112–1118. https://doi.org/10.1002/jcc.24324
  • Iwai, A., Yoshimoto, M., Masliah, E., & Saitoh, T. (1995). Non-A.Beta. component of Alzheimer’s disease amyloid (NAC) is amyloidogenic. Biochemistry, 34(32), 10139–10145. https://doi.org/10.1021/bi00032a006
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kiely, A. P., Ling, H., Asi, Y. T., Kara, E., Proukakis, C., Schapira, A. H., Morris, H. R., Roberts, H. C., Lubbe, S., Limousin, P., Lewis, P. A., Lees, A. J., Quinn, N., Hardy, J., Love, S., Revesz, T., Houlden, H., & Holton, J. L. (2015). Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Molecular Neurodegeneration, 10(1). https://doi.org/10.1186/s13024-015-0038-3
  • Klein, C., & Westenberger, A. (2012). Genetics of Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2(1), a008888. https://doi.org/10.1101/cshperspect.a008888
  • Kulenkampff, K., Wolf Perez, A.-M., Sormanni, P., Habchi, J., & Vendruscolo, M. (2021). Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nature Reviews Chemistry, 5(4), 277–294. https://doi.org/10.1038/s41570-021-00254-9
  • Kumar, S., Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2022). Identification of acridinedione scaffolds as potential inhibitor of DENV‐2 C protein: An in silico strategy to Combat Dengue. Journal of Cellular Biochemistry, 123(5), 935–946. https://doi.org/10.1002/jcb.30237
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Lesage, S., Anheim, M., Letournel, F., Bousset, L., Honoré, A., Rozas, N., Pieri, L., Madiona, K., Durr, A., Melki, R., Verny, C., & Brice, A. (2013). G51D α-synuclein mutation causes a novel Parkinsonian-pyramidal syndrome. Annals of Neurology, 73(4), 459–471. https://doi.org/10.1002/ana.23894
  • Liu, C., Zhao, Y., Xi, H., Jiang, J., Yu, Y., & Dong, W. (2021). The membrane interaction of alpha-synuclein. Frontiers in Cellular Neuroscience, 15 https://doi.org/10.3389/fncel.2021.633727
  • Liu, H., Koros, C., Strohaker, T., Schulte, C., Bozi, M., Varvaresos, S., de Opakua, A. I., Simitsi, A. M., Bougea, A., Voumvourakis, K., Maniati, M., Papageorgiou, S. G., Hauser, A. K., Becker, S., Zweckstetter, M., Stefanis, L., & Gasser, T. (2021). A novel SNCA A30G mutation causes familial parkinsonʼs disease. Movement Disorders, 36(7), 1624–1633. https://doi.org/10.1002/mds.28534
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Loov, C., Scherzer, C. R., Hyman, B. T., Breakefield, X. O., & Ingelsson, M. (2016). Α-synuclein in extracellular vesicles: Functional implications and diagnostic opportunities. Cellular and Molecular Neurobiology, 36(3), 437–448. https://doi.org/10.1007/s10571-015-0317-0
  • Mahul-Mellier, A.-L., Burtscher, J., Maharjan, N., Weerens, L., Croisier, M., Kuttler, F., Leleu, M., Knott, G., & Lashuel, H. A. (2019). The Process of Lewy Body Formation, Rather than Simply Alpha-Synuclein Fibrillization, is the Major Drivers of Neurodegeneration in Synucleinopathies, Proceedings of the National Academy of Sciences, 117(9), 4971-4982. https://doi.org/10.1101/751891
  • Man, W. K., Tahirbegi, B., Vrettas, M. D., Preet, S., Ying, L., Vendruscolo, M., Simone, A. D., & Fusco, G. (2021). The docking of synaptic vesicles on the presynaptic membrane induced by α-synuclein is modulated by lipid composition. Nature Communications, 12(1) https://doi.org/10.1038/s41467-021-21027-4
  • Martikainen, M. H., Päivärinta, M., Hietala, M., & Kaasinen, V. (2015). Clinical and imaging findings in Parkinson disease associated with the A53esncamutation. Neurology Genetics, 1(4), e27. https://doi.org/10.1212/NXG.0000000000000027
  • Masso, M., & Vaisman, I. I. (2010). Auto-mute: Web-based tools for predicting stability changes in proteins due to single amino acid replacements. Protein Engineering Design and Selection, 23(8), 683–687. https://doi.org/10.1093/protein/gzq042
  • Musteikytė, G., Jayaram, A. K., Xu, C. K., Vendruscolo, M., Krainer, G., & Knowles, T. P. (2021). Interactions of α-synuclein oligomers with lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(4), 183536. https://doi.org/10.1016/j.bbamem.2020.183536
  • Newberry, R. W., Leong, J. T., Chow, E. D., Kampmann, M., & DeGrado, W. F. (2020). Deep mutational scanning reveals the structural basis for α-synuclein activity. Nature Chemical Biology, 16(6), 653–659. https://doi.org/10.1038/s41589-020-0480-6
  • Ng, P. C. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Nishioka, K., Hirano, M., Stoessl, A. J., Yoshino, H., Imamichi, Y., Ikeda, A., Li, Y., Funayama, M., Yamada, I., Yusaku, N., Sossi, V., Farrer, M., & Hattori, N. (2017). Homozygous alpha-synuclein A53V in familial Parkinson’s disease. Journal of the Neurological Sciences, 381, 161. https://doi.org/10.1016/j.jns.2017.08.471
  • Otaki, H., Taguchi, Y., & Nishida, N. (2022). Conformation-dependent influences of hydrophobic amino acids in two in-register parallel β-sheet amyloids, an α-synuclein amyloid and a local structural model of PRPsc. ACS Omega. 7(35), 31271–31288. https://doi.org/10.1021/acsomega.2c03523
  • Pandurangan, A. P., Ochoa-Montaño, B., Ascher, D. B., & Blundell, T. L. (2017). SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Research, 45(W1), W229–W235. https://doi.org/10.1093/nar/gkx439
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34(Web Server), W239–W242. https://doi.org/10.1093/nar/gkl190
  • Pasanen, P., Myllykangas, L., Siitonen, M., Raunio, A., Kaakkola, S., Lyytinen, J., Tienari, P. J., Poyhonen, M., & Paetau, A. (2014). A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiology of Aging, 35(9), 2180.e1–2180.e5. https://doi.org/10.1016/j.neurobiolaging.2014.03.024
  • Patra, M., Karttunen, M., Hyvönen, M. T., Falck, E., Lindqvist, P., & Vattulainen, I. (2003). Molecular dynamics simulations of lipid bilayers: Major artifacts due to truncating electrostatic interactions. Biophysical Journal, 84(6), 3636–3645. https://doi.org/10.1016/s0006-3495(03)75094-2
  • Perlmutter, J. D., Braun, A. R., & Sachs, J. N. (2009). Curvature dynamics of α-synuclein familial parkinson disease mutants. Journal of Biological Chemistry, 284(11), 7177–7189. https://doi.org/10.1074/jbc.M808895200
  • Petrache, H. I., Tristram-Nagle, S., Gawrisch, K., Harries, D., Parsegian, V. A., & Nagle, J. F. (2004). Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophysical Journal, 86(3), 1574–1586. https://doi.org/10.1016/s0006-3495(04)74225-3
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera? A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pimentel, M. M. G., Rodrigues, F. C., Leite, M. A., Campos Junior, M., Rosso, A. L., Nicaretta, D. H., Pereira, J. S., Silva, D. J., Coletta, M. V. D., Vasconcellos, L. F. R., Abreu, G. M., dos Santos, J. M., & Santos-Rebouças, C. B. (2015). Parkinson disease: α-synuclein mutational screening and new clinical insight into the P.E46K mutation. Parkinsonism & Related Disorders, 21(6), 586–589. https://doi.org/10.1016/j.parkreldis.2015.03.011
  • Poger, D., & Mark, A. E. (2010). On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: A comparison with experiment. Journal of Chemical Theory and Computation, 6(1), 325–336. https://doi.org/10.1021/ct900487a
  • Poger, D., & Mark, A. E. (2012). Lipid bilayers: The effect of force field on ordering and dynamics. Journal of Chemical Theory and Computation, 8(11), 4807–4817. https://doi.org/10.1021/ct300675z
  • Proukakis, C., Dudzik, C. G., Brier, T., MacKay, D. S., Cooper, J. M., Millhauser, G. L., Houlden, H., & Schapira, A. H. (2013). A novel α-synuclein missense mutation in Parkinson disease. Neurology, 80(11), 1062–1064. https://doi.org/10.1212/WNL.0b013e31828727ba
  • Rajendran, V. (2016). Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Molecular BioSystems, 12(7), 2276–2287. https://doi.org/10.1039/C6MB00182C
  • Rajendran, V., Gopalakrishnan, C., & Sethumadhavan, R. (2018). Pathological role of a point mutation (T315I) in BCR‐ABL1 protein—A computational insight. Journal of Cellular Biochemistry, 119(1), 918–925. https://doi.org/10.1002/jcb.26257
  • Rajendran, V., Gopalakrishnan, C., & Purohit, R. (2016). Impact of point mutation p29s in RAC1 on tumorigenesis. Tumor Biology, 37(11), 15293–15304. https://doi.org/10.1007/s13277-016-5329-y
  • Rajendran, V., & Sethumadhavan, R. (2014). Drug resistance mechanism of PNCA in mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 32(2), 209–221. https://doi.org/10.1080/07391102.2012.759885
  • Rajendran, V., Purohit, R., & Sethumadhavan, R. (2012). In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in Lamin a/c protein. Amino Acids, 43(2), 603–615. https://doi.org/10.1007/s00726-011-1108-7
  • Rejko, K., Wilfried, K., Thomas, M., Dirk, W., Manuel, G., Sigfried, K., Horst, P., Jorg, T. E., Ludger, S., & Olaf, R. (1998). AlaSOPro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nature Genetics, 18(2), 106–108. https://doi.org/10.1038/ng0298-106
  • Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2018). Dynamut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of N-Alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salomon-Ferrer, R., Go Tz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with Amber on gpus. 2. explicit solvent particle mesh ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Shahmoradian, S. H., Lewis, A. J., Genoud, C., Hench, J., Moors, T. E., Navarro, P. P., Díez, C. D., Schweighauser, G., Meyer, A. G., Goldie, K. N., Sutterlin, R., Huisman, E., Ingrassia, A., de Gier, Y., Rozemuller, A. J. M., Wang, J., De Paepe, A., Erny, J., Staempfli, A., … Lauer, M. E. (2019). Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nature Neuroscience, 22(7), 1099–1109. https://doi.org/10.1038/s41593-019-0423-2
  • Sharma, B., Bhattacherjee, D., Zyryanov, G. V., & Purohit, R. (2022). An insight from computational approach to explore novel, high-affinity phosphodiesterase 10A inhibitors for neurological disorders. Journal of Biomolecular Structure and Dynamics, . https://doi.org/10.1080/07391102.2022.2141895
  • Singh, R., Bhardwaj, V. K., Das, P., & Purohit, R. (2022). Identification of 11β-HSD1 inhibitors through enhanced sampling methods. Chemical Communications, 58(32), 5005–5008. https://doi.org/10.1039/D1CC06894F
  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). Α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy Bodies. Proceedings of the National Academy of Sciences, 95(11), 6469–6473. https://doi.org/10.1073/pnas.95.11.6469
  • Steward, R. E., Armen, R. S., & Daggett, V. (2008). Different disease-causing mutations in transthyretin trigger the same conformational conversion. Protein Engineering Design and Selection, 21(3), 187–195. https://doi.org/10.1093/protein/gzm086
  • Stok, R., & Ashkenazi, A. (2020). Lipids as the key to understanding α-synuclein behaviour in Parkinson disease. Nature Reviews Molecular Cell Biology, 21(7), 357–358. https://doi.org/10.1038/s41580-020-0235-y
  • Theillet, F.-X., Binolfi, A., Bekei, B., Martorana, A., Rose, H. M., Stuiver, M., Verzini, S., Lorenz, D., Rossum, M. V., Goldfarb, D., & Selenko, P. (2016). Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature, 530(7588), 45–50. https://doi.org/10.1038/nature16531
  • Thompson, A. G., Gray, E., Heman-Ackah, S. M., Mäger, I., Talbot, K., Andaloussi, S. E., Wood, M. J., & Turner, M. R. (2016). Extracellular vesicles in neurodegenerative disease—Pathogenesis to biomarkers. Nature Reviews Neurology, 12(6), 346–357. https://doi.org/10.1038/nrneurol.2016.68
  • Ulmer, T. S., & Bax, A. (2005). Comparison of structure and dynamics of micelle-bound human α-synuclein and Parkinson disease variants. The Journal of Biological Chemistry, 280(52), 43179–43187. https://doi.org/10.1074/jbc.m507624200
  • Ulmer, T. S., Bax, A., Cole, N. B., & Nussbaum, R. L. (2005). Structure and dynamics of micelle-bound human α-synuclein. The Journal of Biological Chemistry, 280(10), 9595–9603. https://doi.org/10.1074/jbc.m411805200
  • Weber, O. C., & Uversky, V. N. (2017). How accurate are your simulations? effects of confined aqueous volume and Amber FF99SB and charmm22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β42 in water. Intrinsically Disordered Proteins, 5(1), e1377813. https://doi.org/10.1080/21690707.2017.1377813
  • Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., & Uversky, V. N. (2010). Pondr-fit: A meta-predictor of intrinsically disordered amino acids. Biochimica et Biophysica Acta, 1804(4), 996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011
  • Zarranz, J. J., Alegre, J., Gómez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., Llorens, V., Tortosa, E. G., Del Ser, T., Munoz, D. G., & de Yebenes, J. G. (2004). The new mutation, E46K, of α-synuclein causes parkinson and lewy body dementia. Annals of Neurology, 55(2), 164–173. https://doi.org/10.1002/ana.10795
  • Zhang, J., Li, X., & Li, J.-D. (2019). The roles of post-translational modifications on α-synuclein in the pathogenesis of Parkinson’s diseases. Frontiers in Neuroscience, 13 https://doi.org/10.3389/fnins.2019.0038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.