132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Glycation reduces the binding dynamics of aflatoxin B1 to human serum albumin: a comprehensive spectroscopic and computational investigation

, , , &
Pages 14797-14811 | Received 04 Jan 2023, Accepted 25 Feb 2023, Published online: 05 Apr 2023

References

  • Aamir Qureshi, M., & Javed, S. (2020). Structural dynamics studies on the binding of aflatoxin B1 to chicken egg albumin using spectroscopic techniques and molecular docking. Journal of Biomolecular Structure and Dynamics, 38(11), 3144–3155. https://doi.org/10.1080/07391102.2019.1652690
  • Ahmad, J., Raghav, A., Ahmad, J., Alam, K., & Khan, A. U. (2017). New insights into non-enzymatic glycation of human serum albumin biopolymer: A study to unveil its impaired structure and function. International Journal of Biological Macromolecules, 101, 84–99. https://doi.org/10.1016/j.ijbiomac.2017.03.086
  • Ali, M. S., & Al-Lohedan, H. A. (2019). Experimental and computational investigation on the molecular interactions of safranal with bovine serum albumin: Binding and anti-amyloidogenic efficacy of ligand. Journal of Molecular Liquids, 278, 385–393. https://doi.org/10.1016/j.molliq.2019.01.034
  • Ali, M. S., Muthukumaran, J., & Al-Lohedan, H. A. (2020). Molecular interactions of ceftazidime with bovine serum albumin: Spectroscopic, molecular docking, and DFT analyses. Journal of Molecular Liquids, 313, 113490. https://doi.org/10.1016/j.molliq.2020.113490
  • Amir, M., Qureshi, M. A., & Javed, S. (2021). Biomolecular interactions and binding dynamics of tyrosine kinase inhibitor erdafitinib, with human serum albumin. Journal of Biomolecular Structure and Dynamics, 39(11), 3934–3947. https://doi.org/10.1080/07391102.2020.1772880
  • Anguizola, J., Matsuda, R., Barnaby, O. S., Hoy, K. S., Wa, C., DeBolt, E., Koke, M., & Hage, D. S. (2013). Review: Glycation of human serum albumin. Clinica Chimica Acta; International Journal of Clinical Chemistry, 425, 64–76. https://doi.org/10.1016/j.cca.2013.07.013
  • Bagheri, F., & Fatemi, M. H. (2022). Investigation of the interaction between nilotinib and alpha-lactalbumin by spectroscopic methods and docking studies. Russian Journal of Bioorganic Chemistry, 48(4), 783–792. https://doi.org/10.1134/S1068162022040057
  • Bagheri, F., & Fatemi, M. H. (2021). Investigation of the interaction of sorafenib with alpha-lactalbumin: Spectroscopic and molecular modeling. Russian Journal of Bioorganic Chemistry, 47(4), 864–873. https://doi.org/10.1134/S1068162021040038
  • Barbosa, S., Taboada, P., & Mosquera, V. (2013). Fibrillation and polymorphism of human serum albumin. In Bio-nanoimaging: Protein misfolding and aggregation (pp. 345–362). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394431-3.00032-8
  • Bhat, S. A., Bhat, W. F., Arif, H., Afsar, M., Sohail, A., Khan, M. S., Rehman, M. T., Khan, R. A., & Bano, B. (2018). Glycation induced conformational transitions in cystatin proceed to form biotoxic aggregates: A multidimensional analysis. Biochimica et Biophysica Acta. Proteins and Proteomics, 1866(9), 989–1000. https://doi.org/10.1016/j.bbapap.2018.06.006
  • Bohlooli, M., Ghaffari-Moghaddam, M., Khajeh, M., & Sheibani, N. (2018). Determination of amadori product in glycated human serum albumin by spectroscopy methods. ChemistrySelect, 3(24), 7018–7022. https://doi.org/10.1002/slct.201800207
  • Dirr, H. W., & Schabort, J. C. (1986). Aflatoxin B1 transport in rat blood plasma. Binding to albumin in vivo and in vitro and spectrofluorimetric studies into the nature of the interaction. Biochimica et Biophysica Acta, 881(3), 383–390. https://doi.org/10.1016/0304-4165(86)90030-9
  • Dockal, M., Carter, D. C., & Rüker, F. (1999). The three recombinant domains of human serum albumin. The Journal of Biological Chemistry, 274(41), 29303–29310. https://doi.org/10.1074/jbc.274.41.29303
  • Faisal, Z., Lemli, B., Szerencsés, D., Kunsági-Máté, S., Bálint, M., Hetényi, C., Kuzma, M., Mayer, M., & Poór, M. (2018). Interactions of zearalenone and its reduced metabolites α-zearalenol and β-zearalenol with serum albumins: Species differences, binding sites, and thermodynamics. Mycotoxin Research, 34(4), 269–278. https://doi.org/10.1007/s12550-018-0321-6
  • Furkan, M., Alam, M. T., Rizvi, A., Khan, K., Ali, A., Naeem., & A., Shamsuzzaman. (2017). Aloe emodin, an anthroquinone from Aloe vera acts as an anti aggregatory agent to the thermally aggregated hemoglobin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179, 188–193. https://doi.org/10.1016/j.saa.2017.02.014
  • He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215. https://doi.org/10.1038/358209a0
  • Hoseyni, P., Fatemi, M. H., Hadjmohammadi, M., & Majidi, S. M. (2022). Experimental and theoretical studies of the interactions of some synthetic food dyes with human serum albumin. Journal of the Iranian Chemical Society, 19(3), 885–892. https://doi.org/10.1007/s13738-021-02351-4
  • Hsieh, S. R., Reddy, P. M., Chang, C. J., Kumar, A., Wu, W. C., & Lin, H. Y. (2016). Exploring the behavior of bovine serum albumin in response to changes in the chemical composition of responsive polymers: Experimental and simulation studies. Polymer, 8, 238. https://doi.org/10.3390/POLYM8060238
  • Il’ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). Interaction of ochratoxin A with human serum albumin. A common binding site of ochratoxin A and warfarin in subdomain IIA. Journal of Physical Chemistry B, 106, 460–465. https://doi.org/10.1021/jp012315m
  • Iqbal, S., Qais, F. A., Alam, M. M., & Naseem, I. (2018). Effect of glycation on human serum albumin–zinc interaction: A biophysical study. JBIC: Journal of Biological Inorganic Chemistry, 23(3), 447–458. https://doi.org/10.1007/s00775-018-1554-8
  • Jahanban-Esfahlan, A., Panahi-Azar, V., & Sajedi, S. (2016). Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chemistry, 202, 426–431. https://doi.org/10.1016/j.foodchem.2016.02.026
  • Kandagal, P. B., Ashoka, S., Seetharamappa, J., Shaikh, S. M. T., Jadegoud, Y., & Ijare, O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 393–399. https://doi.org/10.1016/j.jpba.2005.11.037
  • Khan, M. W. A., Rasheed, Z., Khan, W. A., & Ali, R. (2007). Biochemical, biophysical, and thermodynamic analysis of in vitro glycated human serum albumin. Biochemistry, 72, 146–152. https://doi.org/10.1134/S0006297907020034
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). In Principles of Fluorescence Spectroscopy. Springer. https://doi.org/10.1007/978-0-387-46312-4
  • Lapolla, A., Fedele, D., Reitano, R., Bonfante, L., Guizzo, M., Seraglia, R., Tubaro, M., & Traldi, P. (2005). Mass spectrometric study of in vivo production of advanced glycation end-products/peptides. Journal of Mass Spectrometry, 40(7), 969–972. https://doi.org/10.1002/jms.842
  • Lee, P., & Wu, X. (2015). Review: Modifications of human serum albumin and their binding effect. Current Pharmaceutical Design, 21(14), 1862–1865. https://doi.org/10.2174/1381612821666150302115025
  • Levitt, D. G., & Levitt, M. D. (2016). Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. International Journal of General Medicine, 9, 229–255. https://doi.org/10.2147/IJGM.S102819
  • Liang, G.-W., Chen, Y.-C., Wang, Y., Wang, H.-M., Pan, X.-Y., Chen, P.-H., & Niu, Q.-X. (2018). Interaction between saikosaponin D, paeoniflorin, and human serum albumin. Molecules, 23(2), 249. https://doi.org/10.3390/molecules23020249
  • Lou, Y. Y., Zhou, K. L., Pan, D. Q., Le Shen, J., & Shi, J. H. (2017). Spectroscopic and molecular docking approaches for investigating conformation and binding characteristics of clonazepam with bovine serum albumin (BSA). Journal of Photochemistry and Photobiology B: Biology, 167, 158–167. https://doi.org/10.1016/j.jphotobiol.2016.12.029
  • Lu, H., Liu, F., Zhu, Q., Zhang, M., Li, T., Chen, J., Huang, Y., Wang, X., & Sheng, J. (2017). Aflatoxin B1 can be complexed with oxidised tea polyphenols and the absorption of the complexed aflatoxin B1 is inhibited in rats. Journal of the Science of Food and Agriculture, 97(6), 1910–1915. https://doi.org/10.1002/jsfa.7994
  • Marchese, S., Polo, A., Ariano, A., Velotto, S., & Costantini, S. (2018). Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins Reviews, 10(6), 1–19. https://doi.org/10.3390/toxins10060214
  • Milk, P., & Itano, E. N. (2016). Exposure assessment of infants to aflatoxin M 1 through consumption of breast milk and infant. Toxins (Basel), 1, 1–11. https://doi.org/10.3390/toxins8090246
  • Musa, K. A., Ning, T., Mohamad, S. B., & Tayyab, S. (2020). Intermolecular recognition between pyrimethamine, an antimalarial drug and human serum albumin: Spectroscopic and docking study. Journal of Molecular Liquids, 311, 113270. https://doi.org/10.1016/j.molliq.2020.113270
  • Mykkänen, H., Zhu, H., Salminen, E., Juvonen, R. O., Ling, W., Ma, J., Polychronaki, N., Kemiläinen, H., Mykkänen, O., Salminen, S., & El-Nezami, H. (2005). Fecal and urinary excretion of aflatoxin B1 metabolites (AFQ1, AFM1 and AFB-N7-guanine) in young Chinese males. International Journal of Cancer, 115(6), 879–884. https://doi.org/10.1002/ijc.20951
  • Ndzibongwana, S., Ngobese, S., Sayed, A., Shongwe, C., White-Phillips, S., & Joubert, J. (2019). Structural analysis, molecular modelling and preliminary competition binding studies of AM-DAN as a NMDA receptor PCP-site fluorescent ligand. Molecules, 24(22), 4092. https://doi.org/10.3390/molecules24224092
  • Neelofar, K., Arif, Z., Ahmad, J., & Alam, K. (2019). Inhibitory effect of silibinin on amadori-albumin in diabetes mellitus: A multi-spectroscopic and biochemical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 209, 217–222. https://doi.org/10.1016/j.saa.2018.10.044
  • Nusrat, S., Siddiqi, M. K., Zaman, M., Zaidi, N., Rehan Ajmal, M., Alam, P., Qadeer, A., Saber Abdelhameed, A., & Hasan Khan, R. (2016). A comprehensive spectroscopic and computational investigation to probe the interaction of antineoplastic drug nordihydroguaiaretic acid with serum albumins. 11(7), e0158833. https://doi.org/10.1371/journal.pone.0158833
  • Paul, S., Ghanti, R., Sardar, P. S., & Majhi, A. (2019). Synthesis of a novel coumarin derivative and its binding interaction with serum albumins. Chemistry of Heterocyclic Compounds, 55(7), 607–611. https://doi.org/10.1007/s10593-019-02505-6
  • Pestka, J. J., & Chu, F. S. (1984). Aflatoxin B1dihydrodiol antibody: Production and specificity. Applied and Environmental Microbiology, 47(3), 472–477. https://doi.org/10.1128/aem.47.3.472-477.1984
  • Poór, M., Kunsági-Máté, S., Bálint, M., Hetényi, C., Gerner, Z., & Lemli, B. (2017). Interaction of mycotoxin zearalenone with human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 170, 16–24. https://doi.org/10.1016/j.jphotobiol.2017.03.016
  • Qureshi, M. A., & Javed, S. (2022). Investigating binding dynamics of trans resveratrol to HSA for an efficient displacement of aflatoxin B1 using spectroscopy and molecular simulation. Scientific Reports 2022, 12, 1–17. https://doi.org/10.1038/s41598-022-06375-5
  • Qureshi, M. A., & Javed, S. (2021). Aflatoxin B 1 induced structural and conformational changes in bovine serum albumin: A multispectroscopic and circular dichroism-based study. ACS Omega, 6(28), 18054–18064. https://doi.org/10.1021/acsomega.1c01799
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Rostamnezhad, F., & Hossein Fatemi, M. (2022). Comprehensive investigation of binding of some polycyclic aromatic hydrocarbons with bovine serum albumin: Spectroscopic and molecular docking studies. Bioorganic Chemistry, 120, 105656. https://doi.org/10.1016/j.bioorg.2022.105656
  • Salim, M. M., El Sharkasy, M. E., Belal, F., & Walash, M. (2021). Multi-spectroscopic and molecular docking studies for binding interaction between fluvoxamine and human serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 252, 119495. https://doi.org/10.1016/j.saa.2021.119495
  • Schmitt, A., Schmitt, J., Münch, G., & Gasic-Milencovic, J. (2005). Characterization of advanced glycation end products for biochemical studies: Side chain modifications and fluorescence characteristics. Analytical Biochemistry, 338(2), 201–215. https://doi.org/10.1016/j.ab.2004.12.003
  • Selva Sharma, A., Anandakumar, S., & Ilanchelian, M. (2014). A combined spectroscopic and molecular docking study on site selective binding interaction of toluidine blue o with human and bovine serum albumins. Journal of Luminescense, 151, 206–218. https://doi.org/10.1016/j.jlumin.2014.02.009
  • Selva Sharma, A., & Ilanchelian, M. (2015). Comprehensive multispectroscopic analysis on the interaction and corona formation of human serum albumin with gold/silver alloy nanoparticles. The Journal of Physical Chemistry B, 119(30), 9461–9476. https://doi.org/10.1021/acs.jpcb.5b00436
  • Shen, Y., Zhu, C., Wang, Y., Xu, J., Xue, R., Ji, F., Wu, Y., Wu, Z., Zhang, W., Zheng, Z., & Ye, Y. (2020). Evaluation the binding of chelerythrine, a potentially harmful toxin, with bovine serum albumin. Food and Chemical Toxicology, 135, 110933. https://doi.org/10.1016/j.fct.2019.110933
  • Siddiqui, M. F., & Bano, B. (2018). Exposure of carbendazim induces structural and functional alteration in garlic phytocystatin: An in vitro multi-spectroscopic approach. Pesticide Biochemistry and Physiology, 145, 66–75. https://doi.org/10.1016/j.pestbp.2018.01.008
  • Siddiqui, S., Ameen, F., Jahan, I., Nayeem, S. M., & Tabish, M. (2019). A comprehensive spectroscopic and computational investigation on the binding of the anti-asthmatic drug triamcinolone with serum albumin. New Journal of Chemistry, 43(10), 4137–4151. https://doi.org/10.1039/C8NJ05486J
  • Singh, I., Luxami, V., & Paul, K. (2020). Spectroscopy and molecular docking approach for investigation on the binding of nocodazole to human serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 235, 118289. https://doi.org/10.1016/j.saa.2020.118289
  • Singha Roy, A., Pandey, N. K., & Dasgupta, S. (2013). Preferential binding of fisetin to the native state of bovine serum albumin: Spectroscopic and docking studies. Molecular Biology Reports, 40(4), 3239–3253. https://doi.org/10.1007/s11033-012-2399-9
  • Singla, R., Abidi, S. M. S., Dar, A. I., & Acharya, A. (2019). Inhibition of glycation-induced aggregation of human serum albumin by organic-inorganic hybrid nanocomposites of iron oxide-functionalized nanocellulose. ACS Omega, 4(12), 14805–14819. https://doi.org/10.1021/acsomega.9b01392
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1975). The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology, 11(6), 824–832.
  • Tabassum, S., Al-Asbahy, W. M., Afzal, M., & Arjmand, F. (2012). Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): Spectroscopic and molecular docking investigations. Journal of Photochemistry and Photobiology B: Biology, 114, 132–139. https://doi.org/10.1016/j.jphotobiol.2012.05.021
  • Tan, H., Chen, L., Ma, L., Liu, S., Zhou, H., Zhang, Y., Guo, T., Liu, W., Dai, H., & Yu, Y. (2019). Fluorescence spectroscopic investigation of competitive interactions between quercetin and aflatoxin B1 for binding to human serum albumin. Toxins (Basel), 11(4), 214. https://doi.org/10.3390/toxins11040214
  • Tao, P., Li, Z., Woolfork, A. G., & Hage, D. S. (2019). Characterization of tolazamide binding with glycated and normal human serum albumin by using high-performance affinity chromatography. Journal of Pharmaceutical and Biomedical Analysis, 166, 273–280. https://doi.org/10.1016/j.jpba.2019.01.025
  • Taverna, M., Marie, A. L., Mira, J. P., & Guidet, B. (2013). Specific antioxidant properties of human serum albumin. Annals of Intensive Care, 3(1), 4. https://doi.org/10.1186/2110-5820-3-4
  • Thornalley, P. J., Langborg, A., & Minhas, H. S. (1999). Formation of glyoxal, methylglyoxal and 8-deoxyglucosone in the glycation of proteins by glucose. Biochemical Journal, 344(1), 109–116. https://doi.org/10.1042/0264-6021:3440109
  • Trynda-Lemiesz, L., & Wiglusz, K. (2011). Effects of glycation on meloxicam binding to human serum albumin. Journal of Molecular Structure, 995(1–3), 35–40. https://doi.org/10.1016/j.molstruc.2011.03.037
  • Wangia, R. N., Tang, L., & Wang, J.-S. (2019). Occupational exposure to aflatoxins and health outcomes: A review. Journal of Environmental Health Science. Part C, 37(4), 215–234. https://doi.org/10.1080/10590501.2019.1664836
  • Wu, D., Wang, J., Liu, D., Zhang, Y., & Hu, X. (2019). Computational and spectroscopic analysis of interaction between food colorant citrus red 2 and human serum albumin. Scientific Reports, 9, 1–8. https://doi.org/10.1038/s41598-018-38240-9
  • Xu, L., Hu, Y. X., Li, Y. C., Liu, Y. F., Zhang, L., Ai, H. X., & Liu, H. S. (2017). Study on the interaction of paeoniflorin with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Chemistry Central Journal, 11(1), 116. https://doi.org/10.1186/s13065-017-0348-3
  • Yadav, P., Sharma, B., Sharma, C., Singh, P., & Awasthi, S. K. (2020). Interaction between the antimalarial drug dispiro-tetraoxanes and human serum albumin: A combined study with spectroscopic methods and computational studies. ACS Omega, 5(12), 6472–6480. https://doi.org/10.1021/acsomega.9b04095
  • Yunus, A. W., Razzazi-Fazeli, E., Bohm, J., Yunus, A. W., Razzazi-Fazeli, E., & Bohm, J. (2011). Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: A review of history and contemporary issues. Toxins (Basel), 3(6), 566–590. https://doi.org/10.3390/toxins3060566
  • Zhang, Z., Yang, M., Yi, J., Zhu, Q., Huang, C., Chen, Y., Li, J., Yang, B., & Zhao, X. (2019). Comprehensive insights into the interactions of two emerging bromophenolic DBPs with human serum albumin by multispectroscopy and molecular docking. ACS Omega, 4(1), 563–572. https://doi.org/10.1021/acsomega.8b03116

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.