91
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Elucidation of binding mechanism of rhodanine derivative P4OC on bovine serum albumin

, , , , &
Pages 475-482 | Received 19 Oct 2022, Accepted 15 Mar 2023, Published online: 28 Mar 2023

References

  • Alsaif, N. A., Wani, T. A., Bakheit, A. H., & Zargar, S. (2020). Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for binding to human serum albumin. International Journal of Biological Macromolecules, 165(Pt B), 2451–2461. https://doi.org/10.1016/j.ijbiomac.2020.10.098
  • Banerjee, A., Mohanty, M., Lima, S., Samanta, R., Garribba, E., Sasamori, T., & Dinda, R. (2020). Synthesis, structure and characterization of new dithiocarbazate-based mixed ligandoxidovanadium (IV) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies. New Journal of Chemistry, 44(26), 10946–10963. https://doi.org/10.1039/D0NJ01246G
  • Celestina, S. K., Sundaram, K., & Ravi, S. (2020). In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Bioorganic Chemistry, 97, 103640. https://doi.org/10.1016/j.bioorg.2020.103640
  • Hasan, Z., Islam, A., & Khan, L. A. (2023). Spectroscopic investigations on fungal aspartic protease as target of gallic acid. International Journal of Biological Macromolecules, 228, 333–345. https://doi.org/10.1016/j.ijbiomac.2022.12.218
  • Hashida, M. (2020). Role of pharmacokinetic consideration for the development of drug delivery systems: A historical overview. Advanced Drug Delivery Reviews, 157, 71–82. https://doi.org/10.1016/j.addr.2020.06.015
  • Hirata, K., Kawai, A., Chuang, V. T. G., Sakurama, K., Nishi, K., Yamasaki, K., & Otagiri, M. (2022). Effects of myristate on the induced circular dichroism spectra of aripiprazole bound to human serum albumin: A structural–chemical investigation. ACS Omega, 7(5), 4413–4419. https://doi.org/10.1021/acsomega.1c06220
  • Lakowicz, J. R., & Fu, Y. (2009). Modification of single molecule fluorescence near metallic nanostructures. Laser & photonics reviews, 3(1–2), 221–232. https://doi.org/10.1002/lpor.200810035
  • Li, J., & Yao, P. (2009). Self-assembly of ibuprofen and bovine serum albumin − dextran conjugates leading to effective loading of the drug. Langmuir : The ACS Journal of Surfaces and Colloids, 25(11), 6385–6391. https://doi.org/10.1021/la804288u
  • Lin, X., Li, X., & Lin, X. (2020). A review on applications of computational methods in drug screening and design. Molecules, 25(6), 1375. https://doi.org/10.3390/molecules25061375
  • Mohammadgholi, A., Leilabadi-Asl, A., Divsalar, A., & Eslami-Moghadam, M. (2021). Multi-spectroscopic studies of the interaction of new synthesized platin complex with human carrier protein of serum albumin. Journal of Biomolecular Structure & Dynamics, 39(4), 1506–1511. https://doi.org/10.1080/07391102.2020.1745690
  • Naik, P. N., Chimatadar, S. A., & Nandibewoor, S. T. (2010). Interaction between a potent corticosteroid drug–dexamethasone with bovine serum albumin and human serum albumin: a fluorescence quenching and Fourier transformation infrared spectroscopy study. Journal of Photochemistry and Photobiology. B, Biology, 100(3), 147–159. https://doi.org/10.1016/j.jphotobiol.2010.05.014
  • Patnin, S., Makarasen, A., Kuno, M., Deeyohe, S., Techasakul, S., & Chaivisuthangkura, A. (2020). Binding interaction of potent HIV-1 NNRTIs, amino-oxy-diarylquinoline with the transport protein using spectroscopic and molecular docking. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 233, 118159. https://doi.org/10.1016/j.saa.2020.118159
  • Qi, X., Xu, D., Zhu, J., Wang, S., Peng, J., Gao, W., & Cao, Y. (2021). Studying the interaction mechanism between bovine serum albumin and lutein dipalmitate: Multi-spectroscopic and molecular docking techniques. Food Hydrocolloids, 113, 106513. https://doi.org/10.1016/j.foodhyd.2020.106513
  • Rahman, A. J., Kaur, L., Pathak, M., Singh, A., Verma, P., Singhal, R., Kumar, V., & Ojha, H. (2021). Spectroscopic studies of binding interactions of 2-chloroethylphenyl sulphide with bovine serum albumin. Journal of Molecular Liquids, 340, 117144. https://doi.org/10.1016/j.molliq.2021.117144
  • Rahman, A. J., Sharma, D., Kumar, D., Pathak, M., Singh, A., Kumar, V., Chawla, R., & Ojha, H. (2021). Spectroscopic and molecular modelling study of binding mechanism of bovine serum albumin with phosmet. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 244, 118803. https://doi.org/10.1016/j.saa.2020.118803
  • Skrt, M., Benedik, E., Podlipnik, Č., & Ulrih, N. P. (2012). Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chemistry, 135(4), 2418–2424. https://doi.org/10.1016/j.foodchem.2012.06.114
  • Subramanyam, R., Gollapudi, A., Bonigala, P., Chinnaboina, M., & Amooru, D. G. (2009). Betulinic acid binding to human serum albumin: A study of protein conformation and binding affinity. Journal of Photochemistry and Photobiology. B, Biology, 94(1), 8–12. https://doi.org/10.1016/j.jphotobiol.2008.09.002
  • Vlasiou, M. C., & Pafiti, K. S. (2020). Spectroscopic evaluation of Zn (II) complexes with drug analogues: Interactions with BSA and the pH effect on the drug-Zn (II) system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 241, 118641.
  • Wani, T. A., Bakheit, A. H., Zargar, S., & Alamery, S. (2022). Mechanistic competitive binding interaction study between olmutinib and colchicine with model transport protein using spectroscopic and computer simulation approaches. Journal of Photochemistry and Photobiology A: Chemistry, 426, 113794. https://doi.org/10.1016/j.jphotochem.2022.113794
  • Yadav, S. A., Faruck, L. H., Subramanium, R., Surendren, L. K., & Bakshi, H. (2021). Screening and assessment of molecular mechanistic actions of 5-hydroxy-1-methylpiperidin-2-one against free radicals, lung cancer cell line (A549), and binding properties on bovine serum albumin. Future Journal of Pharmaceutical Sciences, 7(1), 1–11. https://doi.org/10.1186/s43094-021-00277-5
  • Yadav, S. A., Yeggoni, D. P., Devadasu, E., & Subramanyam, R. (2018). Molecular binding mechanism of 5-hydroxy-1-methylpiperidin-2-one with human serum albumin. Journal of Biomolecular Structure & Dynamics, 36(3), 810–817. https://doi.org/10.1080/07391102.2017.1300106
  • Yeggoni, D. P., Dubey, S., Mohammad, Y. Z., Rachamallu, A., & Subramanyam, R. (2021). Elucidation of binding mechanism of stigmasterol with human serum albumin: a biophysical and molecular dynamics simulation approach. Journal of Biomolecular Structure and Dynamics, 14, 1–3. https://doi.org/10.1080/07391102.2021.1968498
  • Yegorova, A., Scrypynets, Y., Maltsev, G., Leonenko, I., Antonovich, V., Kashutskуy, S., & Voitiuk, O. (2020). Spectroscopic studies on the interaction between novel antiviral drug favipiravir and serum albumins. French-Ukrainian Journal of Chemistry, 8(2), 93–103. https://doi.org/10.17721/fujcV8I2P93-103
  • Yin, L. J., bin Ahmad Kamar, A. K. D., Fung, G. T., Liang, C. T., & Avupati, V. R. (2022). Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 145, 112406. https://doi.org/10.1016/j.biopha.2021.112406
  • Yu, X., Cai, X., Li, S., Luo, L., Wang, J., Wang, M., & Zeng, L. (2022a). Studies on the interactions of theaflavin-3, 3′-digallate with bovine serum albumin: Multi-spectroscopic analysis and molecular docking. Food Chemistry, 366, 130422. https://doi.org/10.1016/j.foodchem.2021.130422
  • Yu, L., Hua, Z., Luo, X., Zhao, T., & Liu, Y. (2022b). Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochimica et Biophysica Acta. Reviews on Cancer, 1877(1), 188655. https://doi.org/10.1016/j.bbcan.2021.188655
  • Yu, J., Li, B., Dai, P., & Ge, S. (2009). Molecular simulation of the interaction between novel type rhodanine derivative probe and bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(1), 277–281. https://doi.org/10.1016/j.saa.2009.06.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.