136
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A new strategy for making a sensitive sensor for aspirin drug: first-principles investigations by using pure and metal-doped BN nano-heterostructures

Pages 766-778 | Received 26 Dec 2022, Accepted 19 Mar 2023, Published online: 30 Mar 2023

References

  • Adebayo, G. I., Williams, J., & Healy, S. (2007). Aspirin esterase activity - Evidence for skewed distribution in healthy volunteers. European Journal of Internal Medicine, 18(4), 299–303. https://doi.org/10.1016/j.ejim.2006.12.004
  • Agunbiade, F. O., & Moodley, B. (2016). Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environmental Toxicology and Chemistry, 35(1), 36–46. https://doi.org/10.1002/etc.3144
  • Amekpewu, M., Mensah, S. Y., Musah, R., Abukari, S. S., Mensah, N. G., & Dompreh, K. A. (2021). Radius dependence of the electrical conductivity of zigzgag carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 130, 114712.
  • Anota, E. C., Cocoletzi, G. H., & Ramírez, J. F. S. (2013). BN nanotubes–levothyroxine interactions: A molecular study. Journal of Molecular Modeling, 19(11), 4991–4996. https://doi.org/10.1007/s00894-013-1999-1
  • Baierle, R. J., Piquini, P., Schmidt, T. M., & Fazzio, A. (2006). Hydrogen adsorption on carbon-doped boron nitride nanotube. The Journal of Physical Chemistry B, 110(42), 21184–21188. https://doi.org/10.1021/jp061587s
  • Bankiewicz, B., Matczak, P., & Palusiak, M. (2012). Electron density characteristics in bond critical point (QTAIM) versus interaction energy components (SAPT): The case of charge-assisted hydrogen bonding. The Journal of Physical Chemistry A, 116, 452.
  • Becke, A. (2007). The quantum theory of atoms in molecules: From solid state to DNA and drug design. John Wiley & Sons.
  • Beheshtian, J., Ahmadi Peyghan, A., & Bagheri, Z. (2012). Detection of phosgene by Sc-doped BN nanotubes: A DFT study. Sensor Actuator B, 171–172, 846–852.
  • Beheshtian, J., Peyghan, A. A., Tabar, M. B., & Bagheri, Z. (2013). DFT study on the functionalization of a BN nanotube with sulfamide. Applied Surface Science, 266, 182–187.
  • Biegler‐König, F., & Schönbohm, J. (2002). Update of the AIM2000‐program for atoms in molecules. Journal of Computational Chemistry, 23(15), 1489–1494. https://doi.org/10.1002/jcc.10085
  • Blase, X., Rubio, A., Louie, S. G., & Cohen, M. L. (1994). Stability and band gap constancy of boron nitride nanotubes. Europhysics Letters, 28, 335–340. https://doi.org/10.1209/0295-5075/28/5/007
  • Cao, M., Wu, D., Yoosefian, M., Sabaei, S., & Jahani, M. (2020). Comprehensive study of the encapsulation of Lomustine anticancer drug into single walled carbon nanotubes (SWCNTs): Solvent effects, molecular conformations, electronic properties and intramolecular hydrogen bond strength. Journal of Molecular Liquids, 320, 114285. https://doi.org/10.1016/j.molliq.2020.114285
  • Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G., & Zettl, A. (1995). Boron nitride nanotubes. Science (New York, N.Y.), 269(5226), 966–967. https://doi.org/10.1126/science.269.5226.966
  • Ciofani, G., Genchi, G. G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F., & Mattoli, V. (2012). A simple approach to covalent functionalization of boron nitride nanotubes. Journal of Colloid and Interface Science, 374(1), 308–314. https://doi.org/10.1016/j.jcis.2012.01.049
  • Cohen, M. L., & Zettl, A. (2010). The physics of boron nitride nanotubes. Physics Today, 63, 34–38. https://doi.org/10.1063/1.3518210
  • Durgun, E., Jang, Y. R., & Ciraci, S. (2007). Hydrogen storage capacity of Tidoped boron–nitride and B/Be-substituted carbon nanotubes. Physical Review B, 76, 073413–073414.
  • El-Mageed, H. A., Mustafa, F., & Abdel-Latif, M. K. (2022). Boron nitride nanoclusters, nanoparticles and nanotubes as a drug carrier for isoniazid anti-tuberculosis drug, computational chemistry approaches. Journal of Biomolecular Structure and Dynamics, 40, 226–235.
  • Esrafili, M. D., & Behzadi, H. (2013). A DFT study on carbon-doping at different sites of (8, 0) boronnitride nanotube. Structural Chemistry, 24, 573–581.
  • Frisch, M., Trucks, G., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., & Foresman, J. B. (2009). Petersson, Inc. (p. 201.).
  • Goldberg, D., Bando, Y., Han, W., Kurashima, K., & Sato, T. (1999). Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chemical Physics Letters, 308, 337–342. https://doi.org/10.1016/S0009-2614(99)00591-6
  • Heidari, H., Afshari, S., & Habibi, E. (2015). Sensing properties of pristine, Al-doped, and defected boron nitride nanosheet toward mercaptans: A first-principles study. RSC Advances, 5(114), 94201–94209.
  • Islam, M. S., Kouzani, A. Z., Dai, X. J., & Michalski, W. P. (2010). Design and analysis of a cantilever biosensor based on a boron nitride nanotube TENCON 2010. Proceedings of the 2010 IEEE Region 10 Conference (pp. 1951–1956).
  • Kalay, S., Yilmaz, Z., Sen, O., Emanet, M., Kazanc, E., & Çulha, M. (2015). Synthesis of boron nitride nanotubes and their applications. Beilstein Journal of Nanotechnology, 6, 84–102. https://doi.org/10.3762/bjnano.6.9
  • Karjabad, K. D., Mohajeri, S., Shamel, A., Khodadadi-Moghaddam, M., & Rajaei, G. E. (2020). Boron nitride nanoclusters as a sensor for Cyclosarin nerve agent: DFT and thermodynamics studies. SN Applied Sciences, 2(4), 1–8.
  • Koopmans, T. (1933). Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica, 1, 104–113.
  • Krause, D. S., Wolf, B. A., & Shaw, L. M. (1992). Acute aspirin overdose: Mechanisms of toxicity. Therapeutic Drug Monitoring, 14(6), 441–451. https://doi.org/10.1097/00007691-199212000-00001
  • Kumar, V. S., Mary, Y. S., Pradhan, K., Brahman, D., Mary, Y. S., Serdaroğlu, G., Rad, A. S., & Roxy, M. (2020). Conformational analysis and quantum descriptors of two new imidazole derivatives by experimental, DFT, AIM, molecular docking studies and adsorption activity on graphene. Heliyon, 6, e05182.
  • Lahiri, D., Singh, V., Benaduce, A. P., Seal, S., Kos, L., & Agarwal, A. (2011). Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. Journal of the Mechanical Behavior of Biomedical Materials, 4(1), 44–56. https://doi.org/10.1016/j.jmbbm.2010.09.005
  • Lai, L., Song, W., Lu, J., Gao, Z., Nagase, S., Ni, M., Mei, W. N., Liu, J., Yu, D., & Ye, H. (2006). Structural and electronic properties of fluorinated boron nitride nanotubes. The Journal of Physical Chemistry B, 110(29), 14092–14097.
  • Lee, Y., Kwon, D. G., Kim, G., & Kwon, Y. K. (2017). Ab initio study of aspirin adsorption on single-walled carbon and carbon nitride nanotubes. Physical Chemistry Chemical Physics, 19(11), 8076–8081.
  • Li, L. H., & Chen, Y. (2010). Superhydrophobic properties of nonaligned boron nitride nanotube films. Langmuir: The ACS Journal of Surfaces and Colloids, 26(7), 5135–5140. https://doi.org/10.1021/la903604w
  • Li, L. H., Chen, Y., & Glushenkov, A. M. (2010). Boron nitride nanotube films grown from boron ink painting. Journal of Materials Chemistry. 20, 9679–9683. https://doi.org/10.1039/c0jm01414a
  • Li, S. S. (2006). Semiconductor physical electronics (pp. 61–104). Springer.
  • Li, X. M., Tian, W. Q., Dong, Q., Huang, X. R., Sun, C. C., & Jiang, L. (2011). Substitutional doping of BN nanotube by transition metal: A density functional theory simulation. Computational and Theoretical Chemistry, 964(1–3), 199–206.
  • Ma, N., Liu, X. W., Yang, Y. J., Li, J. Y., Mohamed, I., Liu, G. R., & Zhang, J. Y. (2015). Preventive effect of aspirin eugenol ester on thrombosis in κ-carrageenan-induced rat tail thrombosis model. PLoS One, 10(7), e0133125. https://doi.org/10.1371/journal.pone.0133125
  • Mirhaji, E., Afshar, M., Rezvani, S., & Yoosefian, M. (2018). Boron nitride nanotubes as a nanotransporter for anti-cancer docetaxel drug in water/ethanol solution. Journal of Molecular Liquids, 271, 151–156. https://doi.org/10.1016/j.molliq.2018.08.142
  • Mirzaei, M., & Giahi, M. (2010). Computations of the quadrupole coupling constants in aluminum doped boron nitride nanotubes. Physica B: Condensed Matter. 405, 3991–3994.
  • Mirzaei, M., & Nouri, A. (2010). The Al-doped BN nanotubes: A DFT study. Journal of Molecular Structure: THEOCHEM, 942(1–3), 83–87.
  • O'boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). Cclib: A library for package‐independent computational chemistry algorithms. Journal of Computational Chemistry, 29(5), 839–845. https://doi.org/10.1002/jcc.20823
  • Oliveira, B., Pereira, F., de Araújo, R., & Ramos, M. (2006). The hydrogen bond strength: New proposals to evaluate the intermolecular interaction using DFT calculations and the AIM theory. Chemical Physics Letters, 427, 181.
  • Pokropivnyi, V. V. (2002). Non-carbon nanotubes (Review). Part 3. Properties and applications. Powder Metallurgy and Metal Ceramics, 41(3), 123–135.
  • Qian, H., Deng, J., Zhou, H., Yang, X., & Chen, W. (2019). A DFT study on the adsorption of Ga-BNNT to SF6 decomposition products under partial discharge. Results in Physics, 14, 102419.
  • Rad, A. S., Jouibary, Y. M., Foukolaei, V. P., & Binaeian, E. (2016). Study on the structure and electronic property of adsorbed guanine on aluminum doped graphene: First principles calculations. Current Applied Physics, 16, 527.
  • Radosavljevic, M., Appenzeller, J., Derycke, V., Martel, R., Avouris, P., Loiseau, A., Cochon, J. L., & Pigache, D. (2003). Electrical properties and transport in boron nitride nanotubes. Applied Physics Letters, 82, 4131–4133. https://doi.org/10.1063/1.1581370
  • Raffa, V., Ciofani, G., & Cuschieri, A. (2009). Enhanced low voltage cell electropermeabilization by boron nitride nanotubes. Nanotechnology, 20(7), 075104. https://doi.org/10.1088/0957-4484/20/7/075104
  • Rubio, A., Corkill, J. L., & Cohen, M. L. (1994). Theory of graphitic boron nitride nanotubes. Physical Review B, Condensed Matter, 49(7), 5081–5084. https://doi.org/10.1103/physrevb.49.5081
  • Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters, 60, 2204–2206. https://doi.org/10.1063/1.107080
  • Singhal, S. K., Srivastava, A. K., Pasricha, R., & Mathur, R. B. (2011). Fabrication of Al-matrix composites reinforced with amino functionalized boron nitride nanotubes. Journal of Nanoscience and Nanotechnology, 11(6), 5179–5186. https://doi.org/10.1166/jnn.2011.4182
  • Soltani, A., Baei, M. T., Ghasemi, A. S., Lemeski, E. T., & Amirabadi, K. H. (2014). Adsorption of cyanogen chloride over Al-and Ga-doped BN nanotubes. Superlattices and Microstructures, 75, 564–575.
  • Soltani, A., Raz, S. G., Rezaei, V. J., Khalaji, A. D., & Savar, M. (2012). Ab initio investigation of Al-and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Applied Surface Science, 263, 619–625.
  • Tang, C., Bando, Y., Huang, Y., Yue, S., Gu, C., Xu, F., & Golberg, D. (2005). Fluorination and electrical conductivity of BN nanotubes. Journal of the American Chemical Society, 127(18), 6552–6553.
  • Venkataramanan, N. S., Belosludov, R. V., Sahara, R., Mizuseki, H., & Kawazoe, Y. (2010). Theoretical investigation on the alkali–metal doped BN fullerene as a material for hydrogen storage. Chemical Physics, 377, 54–59.
  • Wu, R. Q., Liu, L., Peng, G. W., & Feng, Y. P. (2005). Magnetism in BN nanotubes induced by carbon doping. Applied Physics Letters, 86, 122510–122512.
  • Yadav, V. K., Mir, S. H., & Singh, J. K. (2019). Density functional theory study of aspirin adsorption on BCN sheets and their hydrogen evolution reaction activity: A comparative study with graphene and hexagonal boron nitride. ChemPhysChem. 20(5), 687–694.
  • Yeh, C. H., Lin, W. Y., & Jiang, J. C. (2020). Enhancement of chlorobenzene sensing by doping aluminum on nanotubes: A DFT study. Applied Surface Science, 514, 145897.
  • Yoosefian, M., & Etminan, N. (2018). Leucine/Pd-loaded (5, 5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein. Amino Acids, 50(6), 653–661. https://doi.org/10.1007/s00726-018-2552-4
  • Yoosefian, M., Etminan, N., Moghani, M. Z., Mirzaei, S., & Abbasi, S. (2016). The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants. Superlattices and Microstructures, 98, 325–331. https://doi.org/10.1016/j.spmi.2016.08.049
  • Zhang, Y.-H., Zhou, K.-G., Gou, X.-C., Xie, K.-F., Zhang, H.-L., & Peng, Y. (2010). Effects of dopant and defect on the adsorption of carbon monoxide on graphitic boron nitride sheet: A first-principles study. Chemical Physics Letters, 484, 266–270.
  • Zhukovskii, Y. F., Piskunov, S., Kazerovskis, J., Makaev, D. V., & D’yachkov, P. N. (2013). Comparative theoretical analysis of BN nanotubes doped with Al, P, Ga, As, In, and Sb. The Journal of Physical Chemistry C, 117, 14235–14240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.