323
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Surfactin-like lipopeptides from Bacillus clausii efficiently bind to spike glycoprotein of SARS-CoV-2

, , , &
Pages 14152-14163 | Received 10 Dec 2022, Accepted 02 Feb 2023, Published online: 06 Apr 2023

References

  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Virological, 26(4), 450–452. https://doi.org/10.2106/JBJS.F.00094
  • Baindara, P., Chakraborty, R., Holliday, Z. M., Mandal, S. M., & Schrum, A. G. (2021). Oral probiotics in coronavirus disease 2019: Connecting the gut–lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. New Microbes and New Infections, 40, 100837. https://doi.org/10.1016/j.nmni.2021.100837
  • Baindara, P., Chaudhry, V., Mittal, G., Liao, L. M., Matos, C. O., Khatri, N., Franco, O. L., Patil, P. B., & Korpole, S. (2016). Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrobial Agents and Chemotherapy, 60(1), 580–591. https://doi.org/10.1128/AAC.01813-15
  • Baindara, P., Mandal, S. M., Chawla, N., Singh, P. K., Pinnaka, A. K., & Korpole, S. (2013). Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express, 3(1), 2. https://doi.org/10.1186/2191-0855-3-2
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • BIOVIA Dassault Systèmes. (2015). Discovery Studio Modeling Environment, Releas 4.5, Sandiego: Dassault Systemes. Accelrys Software Inc.
  • Crovella, S., de Freitas, L. C., Zupin, L., Fontana, F., Ruscio, M., Pena, E. P. N., Pinheiro, I. O., & Calsa Junior, T. (2022). Surfactin bacterial antiviral lipopeptide blocks in vitro replication of SARS-CoV-2. Applied Microbiology, 2(3), 680–687. https://doi.org/10.3390/applmicrobiol2030052
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chowdhury, T., Baindara, P., & Mandal, S. M. (2021). LPD-12: A promising lipopeptide to control COVID-19. International Journal of Antimicrobial Agents, 57(1), 106218. https://doi.org/10.1016/j.ijantimicag.2020.106218
  • de Vries, R. D., Schmitz, K. S., Bovier, F. T., Predella, C., Khao, J., Noack, D., Haagmans, B. L., Herfst, S., Stearns, K. N., Drew-Bear, J., Biswas, S., Rockx, B., McGill, G., Dorrello, N. V., Gellman, S. H., Alabi, C. A., de Swart, R. L., Moscona, A., & Porotto, M. (2021). Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science, 371(6536), 1379–1382. https://doi.org/10.1126/science.abf4896originally
  • González-Jaramillo, L. M., Aranda, F. J., Teruel, J. A., Villegas-Escobar, V., & Ortiz, A. (2017). Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes. Colloids and Surfaces. B, Biointerfaces, 156, 114–122. https://doi.org/10.1016/j.colsurfb.2017.05.021
  • Gudiña, E. J., Rangarajan, V., Sen, R., & Rodrigues, L. R. (2013). Potential therapeutic applications of biosurfactants. Trends in Pharmacological Sciences, 34(12), 667–675. https://doi.org/10.1016/j.tips.2013.10.002
  • Hall, T. A. (2007). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41(41), 95–98.
  • Huang, X., Lu, Z., Zhao, H., Bie, X., Lü, F. X., & Yang, S. (2006). Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis FMBJ against pseudorabies virus, porcine parvovirus, Newcastle disease virus and infectious bursal disease virus in vitro. International Journal of Peptide Research and Therapeutics, 12(4), 373–377. https://doi.org/10.1007/s10989-006-9041-4
  • Kang, B. R., Park, J. S., & Jung, W. J. (2021). Antiviral activity by lecithin-induced fengycin lipopeptides as a potent key substrate against cucumber mosaic virus. Microbial Pathogenesis, 155, 104910. https://doi.org/10.1016/j.micpath.2021.104910
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581
  • Kumari, M., Lu, R.-M., Li, M.-C., Huang, J.-L., Hsu, F.-F., Ko, S.-H., Ke, F.-Y., Su, S.-C., Liang, K.-H., Yuan, J. P.-Y., Chiang, H.-L., Sun, C.-P., Lee, I.-J., Li, W.-S., Hsieh, H.-P., Tao, M.-H., & Wu, H.-C. (2022). A critical overview of current progress for COVID-19: Development of vaccines, antiviral drugs, and therapeutic antibodies. Journal of Biomedical Science, 29(1), 68. https://doi.org/10.1186/s12929-022-00852-9
  • Mandal, S. M., Barbosa, A. E. A. D., & Franco, O. L. (2013). Lipopeptides in microbial infection control: Scope and reality for industry. Biotechnology Advances, 31(2), 338–345. https://doi.org/10.1016/j.biotechadv.2013.01.004
  • Mandal, S. M., Dey, S., Mandal, M., Sarkar, S., Maria-Neto, S., & Franco, O. L. (2009). Identification and structural insights of three novel antimicrobial peptides isolated from green coconut water. Peptides, 30(4), 633–637. https://doi.org/10.1016/j.peptides.2008.12.001
  • Mandal, S. M., Mahata, D., Migliolo, L., Parekh, A., Addy, P. S., Mandal, M., & Basak, A. (2014). Glucose directly promotes antifungal resistance in the fungal pathogen, Candida spp. The Journal of Biological Chemistry, 289(37), 25468–25473. https://doi.org/10.1074/jbc.C114.571778
  • Mutlu, O., Ugurel, O. M., Sariyer, E., Ata, O., Inci, T. G., Ugurel, E., Kocer, S., & Turgut-Balik, D. (2022). Targeting SARS-CoV-2 Nsp12/Nsp8 interaction interface with approved and investigational drugs: An in silico structure-based approach. Journal of Biomolecular Structure and Dynamics, 40(2), 918–930. https://doi.org/10.1080/07391102.2020.1819882
  • Naughton, P. J., Marchant, R., Naughton, V., & Banat, I. M. (2019). Microbial biosurfactants: Current trends and applications in agricultural and biomedical industries. Journal of Applied Microbiology, 127(1), 12–28. https://doi.org/10.1111/jam.14243
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Paparo, L., Tripodi, L., Bruno, C., Pisapia, L., Damiano, C., Pastore, L., & Berni Canani, R. (2020). Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Scientific Reports, 10(1), 12636. https://doi.org/10.1038/s41598-020-69533-7
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Penha, R. O., Vandenberghe, L. P. S., Faulds, C., Soccol, V. T., & Soccol, C. R. (2020). Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: Recent studies and innovations. Planta, 251(3), 70. https://doi.org/10.1007/s00425-020-03357-7
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Piva, S., DiBlasi, R. M., Slee, A. E., Jobe, A. H., Roccaro, A. M., Filippini, M., Latronico, N., Bertoni, M., Marshall, J. C., & Portman, M. A. (2021). Surfactant therapy for COVID-19 related ARDS: A retrospective case–control pilot study. Respiratory Research, 22(1), 20. https://doi.org/10.1186/s12931-020-01603-w
  • Rabbani, G., & Ahn, S. N. (2021). Review: Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. International Journal of Biological Macromolecules, 193, 948–955. https://doi.org/10.1016/j.ijbiomac.2021.10.095
  • Rabbani, G., Baig, M. H., Jan, A. T., Ju Lee, E., Khan, M. V., Zaman, M., Farouk, A.-E., Khan, R. H., & Choi, I. (2017). Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International Journal of Biological Macromolecules, 105(Pt 3), 1572–1580. https://doi.org/10.1016/j.ijbiomac.2017.04.051
  • Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics, 15(4), 1445–1456. https://doi.org/10.1021/acs.molpharmaceut.7b00976
  • Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/ja00051a040
  • Rodrigues, L. R., & Teixeira, J. A. (2010). Biomedical and therapeutic applications of biosurfactants. Advances in Experimental Medicine and Biology, 672, 75–87. https://doi.org/10.1007/978-1-4419-5979-9_6
  • Sardesai, S., Biniwale, M., Wertheimer, F., Garingo, A., & Ramanathan, R. (2017). Evolution of surfactant therapy for respiratory distress syndrome: Past, present, and future. Pediatric Research, 81(1–2), 240–248. https://doi.org/10.1038/pr.2016.203
  • Syedbasha, M., Linnik, J., Santer, D., O'Shea, D., Barakat, K., Joyce, M., Khanna, N., Tyrrell, D. L., Houghton, M., & Egli, A. (2016). An ELISA based binding and competition method to rapidly determine ligand-receptor interactions. Journal of Visualized Experiments, 2016(109), 53575. https://doi.org/10.3791/53575
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197
  • Telenti, A., Arvin, A., Corey, L., Corti, D., Diamond, M. S., García-Sastre, A., Garry, R. F., Holmes, E. C., Pang, P. S., & Virgin, H. W. (2021). After the pandemic: Perspectives on the future trajectory of COVID-19. Nature, 596(7873), 495–504. https://doi.org/10.1038/s41586-021-03792-w
  • Théatre, A., Cano-Prieto, C., Bartolini, M., Laurin, Y., Deleu, M., Niehren, J., Fida, T., Gerbinet, S., Alanjary, M., Medema, M. H., Léonard, A., Lins, L., Arabolaza, A., Gramajo, H., Gross, H., & Jacques, P. (2021). The surfactin-like lipopeptides from Bacillus spp.: Natural biodiversity and synthetic biology for a broader application range. Frontiers in Bioengineering and Biotechnology, 9, 623701. https://doi.org/10.3389/fbioe.2021.623701
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Tseng, C. C., Bruner, S. D., Kohli, R. M., Marahiel, M. A., Walsh, C. T., & Sieber, S. A. (2002). Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase. Biochemistry, 41(45), 13350–13359. https://doi.org/10.1021/bi026592a
  • Urdaci, M. C., Bressollier, P., & Pinchuk, I. (2004). Bacillus clausii probiotic strains. Journal of Clinical Gastroenterology, 38(6 Suppl), S86–S90. https://doi.org/10.1097/01.mcg.0000128925.06662.69
  • V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  • Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., & Cameotra, S. S. (2002). Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Applied and Environmental Microbiology, 68(12), 6210–6219. https://doi.org/10.1128/AEM.68.12.6210-6219.2002
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Yuan, L., Zhang, S., Wang, Y., Li, Y., Wang, X., & Yang, Q. (2018). Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. Journal of Virology, 92(21), e00809-18. https://doi.org/10.1128/JVI.00809-18
  • Zhu, Y., Yu, D., Hu, Y., Wu, T., Chong, H., & He, Y. (2021). SARS-CoV-2-derived fusion inhibitor lipopeptides exhibit highly potent and broad-spectrum activity against divergent human coronaviruses. Signal Transduction and Targeted Therapy, 6(1), 294. https://doi.org/10.1038/s41392-021-00698-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.