105
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Screening of natural product libraries in MCF7 cell line reveals the pro-apoptotic properties of β tetralone

, &
Pages 876-884 | Received 27 Jan 2023, Accepted 22 Mar 2023, Published online: 04 Apr 2023

References

  • Alfarouk, K. O., Stock, C. M., Taylor, S., Walsh, M., Muddathir, A. K., Verduzco, D., Bashir, A. H., Mohammed, O. Y., Elhassan, G. O., Harguindey, S., Reshkin, S. J., Ibrahim, M. E., & Rauch, C. (2015). Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell International, 15, 71. https://doi.org/10.1186/s12935-015-0221-1
  • Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J. R., Cardoso, F., Siesling, S., & Soerjomataram, I. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast (Edinburgh, Scotland), 66, 15–23. https://doi.org/10.1016/j.breast.2022.08.010
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews. Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
  • Bhullar, K. S., Lagarón, N. O., McGowan, E. M., Parmar, I., Jha, A., Hubbard, B. P., & Rupasinghe, H. P. V. (2018). Kinase-targeted cancer therapies: Progress, challenges and future directions. Molecular Cancer, 17(1), 48. https://doi.org/10.1186/s12943-018-0804-2
  • Campbell, K. J., Mason, S. M., Winder, M. L., Willemsen, R. B. E., Cloix, C., Lawson, H., Rooney, N., Dhayade, S., Sims, A. H., Blyth, K., & Tait, S. W. G. (2021). Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function. Cell Death and Differentiation, 28(9), 2589–2600. https://doi.org/10.1038/s41418-021-00773-4
  • Carrington, E. M., Zhan, Y., Brady, J. L., Zhang, J. G., Sutherland, R. M., Anstee, N. S., Schenk, R. L., Vikstrom, I. B., Delconte, R. B., Segal, D., Huntington, N. D., Bouillet, P., Tarlinton, D. M., Huang, D. C., Strasser, A., Cory, S., Herold, M. J., & Lew, A. M. (2017). Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death and Differentiation, 24(5), 878–888. https://doi.org/10.1038/cdd.2017.30
  • Cohen, P., Cross, D., & Jänne, P. A. (2021). Kinase drug discovery 20 years after imatinib: Progress and future directions. Nature Reviews. Drug Discovery, 20(7), 551–569. https://doi.org/10.1038/s41573-021-00195-4
  • Elgazzar, E., Nafie, M. S., & Abul-Nasr, K. T. (2022). New synthetic silver-doped ZnO nanorods trigger cytotoxicity in MCF-7 through apoptosis and antimicrobial activity. Journal of Biomolecular Structure and Dynamics, Dec 26, 1–11. https://doi.org/10.1080/07391102.2022.2160815
  • Fernald, K., & Kurokawa, M. (2013). Evading apoptosis in cancer. Trends in Cell Biology, 23(12), 620–633. https://doi.org/10.1016/j.tcb.2013.07.006
  • Ferrando-Díez, A., Felip, E., Pous, A., Bergamino Sirven, M., & Margelí, M. (2022). Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Cancers, 14(14), 3305. https://doi.org/10.3390/cancers14143305
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Garcia Aranda, M., & Redondo, M. (2017). Protein kinase targets in breast cancer. International Journal of Molecular Sciences, 18(12), 2543. https://doi.org/10.3390/ijms18122543
  • Halder, D., Das, S., Aiswarya, R., & Jeyaprakash, R. S. (2022). Molecular docking and dynamics based approach for the identification of kinase inhibitors targeting PI3Kα against non-small cell lung cancer: A computational study. RSC Advances, 12(33), 21452–21467. https://doi.org/10.1039/d2ra03451d
  • Hou, H., Sun, D., & Zhang, X. (2019). The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell International, 19, 216. https://doi.org/10.1186/s12935-019-0937-4
  • Khan, M. I., Bouyahya, A., Hachlafi, N. E. L., Menyiy, N. E., Akram, M., Sultana, S., Zengin, G., Ponomareva, L., Shariati, M. A., Ojo, O. A., Dall’Acqua, S., & Elebiyo, T. C. (2022). Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: A review on recent investigations. Environmental Science and Pollution Research International, 29(17), 24411–24444. https://doi.org/10.1007/s11356-021-17795-7
  • Kocarnik, J. M., Compton, K., Dean, F. E., Fu, W., Gaw, B. L., Harvey, J. D., Henrikson, H. J., Lu, D., Pennini, A., Xu, R., Ababneh, E., Abbasi-Kangevari, M., Abbastabar, H., Abd-Elsalam, S. M., Abdoli, A., Abedi, A., Abidi, H., Abolhassani, H., Adedeji, I. A., & Force, L. M. (2022). Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncology, 8(3), 420–444. https://doi.org/10.1001/jamaoncol.2021.6987
  • Lau, K. H., Tan, A. M., & Shi, Y. (2022). New and emerging targeted therapies for advanced breast cancer. International Journal of Molecular Sciences, 23(4), 2288. https://doi.org/10.3390/ijms23042288
  • Lee, P. Y., Yeoh, Y., & Low, T. Y. (2022). A recent update on small-molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry-based proteomic analysis. The FEBS Journal, Mar 21. https://doi.org/10.1111/febs.16442
  • Liu, F. S. (2009). Mechanisms of chemotherapeutic drug resistance in cancer therapy–a quick review. Taiwanese Journal of Obstetrics & Gynecology, 48(3), 239–244. https://doi.org/10.1016/S1028-4559(09)60296-5
  • Lyons, T. G. (2019). Targeted therapies for triple-negative breast cancer. Current Treatment Options in Oncology, 20(11), 82. https://doi.org/10.1007/s11864-019-0682-x
  • Masoud, V., & Pagès, G. (2017). Targeted therapies in breast cancer: New challenges to fight against resistance. World Journal of Clinical Oncology, 8(2), 120–134. https://doi.org/10.5306/wjco.v8.i2.120
  • Nagare, S., Lokhande, K. B., & Swamy, K. V. (2023). Molecular docking and simulation studies of flavanone and its derived compounds on PI3K-AKT pathway targeting against cancer. Current Drug Discovery Technologies, 20(1), 21–29. https://doi.org/10.2174/1570163819666220526150152
  • Pfeffer, C. M., & Singh, A. T. K. (2018). Apoptosis: A target for anticancer therapy. International Journal of Molecular Sciences, 19(2), 448. https://doi.org/10.3390/ijms19020448
  • Pu, X., Storr, S. J., Zhang, Y., Rakha, E. A., Green, A. R., Ellis, I. O., & Martin, S. G. (2017). Caspase-3 and caspase-8 expression in breast cancer: Caspase-3 is associated with survival. Apoptosis: An International Journal on Programmed Cell Death, 22(3), 357–368. https://doi.org/10.1007/s10495-016-1323-5
  • Seca, A. M. L., & Pinto, D. C. G. A. (2018). Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. International Journal of Molecular Sciences, 19(1), 263. https://doi.org/10.3390/ijms19010263
  • Shaikh, M. F., Morano, W. F., Lee, J., Gleeson, E., Babcock, B. D., Michl, J., Sarafraz-Yazdi, E., Pincus, M. R., & Bowne, W. B. (2016). Emerging role of MDM2 as target for anti-cancer therapy: A review. Annals of Clinical and Laboratory Science, 46(6), 627–634.
  • Shaikh, N., Linthoi, R. K., Swamy, K. V., Karthikeyan, M., & Vyas, R. (2022). Comprehensive molecular docking and dynamic simulations for drug repurposing of clinical drugs against multiple cancer kinase targets. Journal of Biomolecular Structure & Dynamics, Sep 22, 1–9. https://doi.org/10.1080/07391102.2022.2124453
  • Sheng, K., Song, Y., Lei, F., Zhao, W., Fan, L., Wu, L., Liu, Y., Wu, S., & Zhang, Y. (2022). Research progress in pharmacological activities and structure-activity relationships of tetralone scaffolds as pharmacophore and fluorescent skeleton. European Journal of Medicinal Chemistry, 227, 113964. https://doi.org/10.1016/j.ejmech.2021.113964
  • Song, J., Xu, Z., Cao, L., Wang, M., Hou, Y., & Li, K. (2021). The discovery of new drug-target interactions for breast cancer treatment. Molecules (Basel, Switzerland), 26(24), 7474. https://doi.org/10.3390/molecules26247474
  • Trino, S., De Luca, L., Laurenzana, I., Caivano, A., Del Vecchio, L., Martinelli, G., & Musto, P. (2016). P53-MDM2 pathway: Evidences for a new targeted therapeutic approach in B-acute lymphoblastic leukemia. Frontiers in Pharmacology, 7, 491. https://doi.org/10.3389/fphar.2016.00491
  • Wang, Y., & Minden, A. (2022). Current molecular combination therapies used for the treatment of breast cancer. International Journal of Molecular Sciences, 23(19), 11046. https://doi.org/10.3390/ijms231911046
  • Yang, X., Wu, D., & Yuan, S. (2020). Tyrosine kinase inhibitors in the combination therapy of HER2 positive breast cancer. Technology in Cancer Research & Treatment, 19, 1533033820962140. https://doi.org/10.1177/1533033820962140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.