246
Views
1
CrossRef citations to date
0
Altmetric
Rapid Communication

Prediction of resveratrol target proteins: a bioinformatics analysis

Pages 1088-1097 | Received 27 Jan 2023, Accepted 22 Mar 2023, Published online: 03 Apr 2023

References

  • Ahn, J. S., Lee, J.-H., Kim, J.-H., & Paik, S. R. (2007). Novel method for quantitative determination of amyloid fibrils of α-synuclein and amyloid β/A4 protein by using resveratrol. Analytical Biochemistry, 367(2), 259–265. https://doi.org/10.1016/j.ab.2007.05.023
  • Ao, C., Li, C., Chen, J., Tan, J., & Zeng, L. (2022). The role of Cdk5 in neurological disorders. Frontiers in Cellular Neuroscience, 16, 951202. https://doi.org/10.3389/fncel.2022.951202
  • Berman, H. M. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  • Borra, M. T., Smith, B. C., & Denu, J. M. (2005). Mechanism of human SIRT1 activation by resveratrol. The Journal of Biological Chemistry, 280(17), 17187–17195. https://doi.org/10.1074/jbc.M501250200
  • Bowers, J. L., Tyulmenkov, V. V., Jernigan, S. C., & Klinge, C. M. (2000). Resveratrol acts as a mixed agonist/antagonist for estrogen receptors α and β*. Endocrinology, 141(10), 3657–3667. https://doi.org/10.1210/endo.141.10.7721
  • Britton, R. G., Kovoor, C., & Brown, K. (2015). Direct molecular targets of resveratrol: Identifying key interactions to unlock complex mechanisms. Annals of the New York Academy of Sciences, 1348(1), 124–133. https://doi.org/10.1111/nyas.12796
  • Buryanovskyy, L., Fu, Y., Boyd, M., Ma, Y., Hsieh, T., Wu, J. M., & Zhang, Z. (2004). Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry, 43(36), 11417–11426. https://doi.org/10.1021/bi049162o
  • Calleri, E., Pochetti, G., Dossou, K. S. S., Laghezza, A., Montanari, R., Capelli, D., Prada, E., Loiodice, F., Massolini, G., Bernier, M., & Moaddel, R. (2014). Resveratrol and its metabolites bind to PPARs. ChemBioChem. 15(8), 1154–1160. https://doi.org/10.1002/cbic.201300754
  • Case, D., Aktulga, H., Belfon, K., Ben-Shalom, I. Y., Berryman, J. T., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., Cisneros, G. A., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., … Kollman, P. A. (2022). Amber 2022. University of California.
  • Chatterjee, M., Das, S., Janarthan, M., Ramachandran, H. K., & Chatterjee, M. (2011). Role of 5-lipoxygenase in resveratrol mediated suppression of 7,12-dimethylbenz(α)anthracene-induced mammary carcinogenesis in rats. European Journal of Pharmacology, 668(1–2), 99–106. https://doi.org/10.1016/j.ejphar.2011.06.039
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3). https://doi.org/10.1126/sciadv.1501240
  • Chen, Y., Shi, G., Liang, Z., Sheng, S., Shi, Y., Peng, L., Wang, Y., Wang, F., & Zhang, X. (2019). Resveratrol improves cognition and decreases amyloid plaque formation in Tg6799 mice. Molecular Medicine Reports, 19, 3783–3790. https://doi.org/10.3892/mmr.2019.10010
  • Cheng, F., Kovács, I. A., & Barabási, A.-L. (2019). Network-based prediction of drug combinations. Nature Communications, 10(1), 1197. https://doi.org/10.1038/s41467-019-09186-x
  • Cruz, J. C., Kim, D., Moy, L. Y., Dobbin, M. M., Sun, X., Bronson, R. T., & Tsai, L.-H. (2006). p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. The Journal of Neuroscience, 26(41), 10536–10541. https://doi.org/10.1523/JNEUROSCI.3133-06.2006
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Davies, D. R., Mamat, B., Magnusson, O. T., Christensen, J., Haraldsson, M. H., Mishra, R., Pease, B., Hansen, E., Singh, J., Zembower, D., Kim, H., Kiselyov, A. S., Burgin, A. B., Gurney, M. E., & Stewart, L. J. (2009). Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. Journal of Medicinal Chemistry, 52(15), 4694–4715. https://doi.org/10.1021/jm900259h
  • Edgar, R. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207–210. https://doi.org/10.1093/nar/30.1.207
  • Galiniak, S., Aebisher, D., & Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/abp.2018_2749
  • Ghafouri-Fard, S., Bahroudi, Z., Shoorei, H., Hussen, B. M., Talebi, S. F., Baig, S. G., Taheri, M., & Ayatollahi, S. A. (2022). Disease-associated regulation of gene expression by resveratrol: Special focus on the PI3K/AKT signaling pathway. Cancer Cell International, 22(1), 298. https://doi.org/10.1186/s12935-022-02719-3
  • Glicksman, M., Cuny, G., Liu, M., Dobson, B., Auerbach, K., Stein, R., & Kosik, K. (2007). New approaches to the discovery of cdk5 inhibitors. Current Alzheimer Research, 4(5), 547–549. https://doi.org/10.2174/156720507783018181
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(suppl), W270–W277. https://doi.org/10.1093/nar/gkr366
  • Guha, P., Dey, A., Dhyani, M. V., Sen, R., Chatterjee, M., Chattopadhyay, S., & Bandyopadhyay, S. K. (2010). Calpain and caspase orchestrated death signal to accomplish apoptosis induced by resveratrol and its novel analog hydroxstilbene-1 in cancer cells. Journal of Pharmacology and Experimental Therapeutics, 334(2), 381–394. https://doi.org/10.1124/jpet.110.167668
  • Hu, J., Lin, T., Gao, Y., Xu, J., Jiang, C., Wang, G., Bu, G., Xu, H., Chen, H., & Zhang, Y. (2015). The resveratrol trimer miyabenol C inhibits β-secretase activity and β-amyloid generation. PLoS One, 10(1), e0115973. https://doi.org/10.1371/journal.pone.0115973
  • Hu, W.-H., Zhang, X.-Y., Leung, K.-W., Duan, R., Dong, T.-X., Q.-W., Tsim, K. W.-K., ()., & Tina, Qin. (2022). Resveratrol, an inhibitor binding to VEGF, restores the pathology of abnormal angiogenesis in retinopathy of prematurity (ROP) in mice: Application by intravitreal and topical instillation. International Journal of Molecular Sciences, 23(12), 6455. https://doi.org/10.3390/ijms23126455
  • Innocenti, A., Gülçin, I., Scozzafava, A., & Supuran, C. T. (2010). Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I–XV. Bioorganic & Medicinal Chemistry Letters, 20(17), 5050–5053. https://doi.org/10.1016/j.bmcl.2010.07.038
  • Islam, F., Nafady, M. H., Islam, M. R., Saha, S., Rashid, S., Akter, A., Or-Rashid, M. H., Akhtar, M. F., Perveen, A., Md. Ashraf, G., Rahman, M. H., & Hussein Sweilam, S. (2022). Resveratrol and neuroprotection: An insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside. Molecular Neurobiology, 59(7), 4384–4404. https://doi.org/10.1007/s12035-022-02859-7
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Jha, K., Saha, S., & Singh, H. (2022). Prediction of protein–protein interaction using graph neural networks. Scientific Reports, 12(1), 8360. https://doi.org/10.1038/s41598-022-12201-9
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kataria, R., & Khatkar, A. (2019). Resveratrol in various pockets: A review. Current Topics in Medicinal Chemistry, 19(2), 116–122. https://doi.org/10.2174/1568026619666190301173958
  • Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907–915. https://doi.org/10.1038/s41587-019-0201-4
  • Kim, E. N., Lim, J. H., Kim, M. Y., Ban, T. H., Jang, I.-A., Yoon, H. E., Park, C. W., Chang, Y. S., & Choi, B. S. (2018). Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging, 10(1), 83–99. https://doi.org/10.18632/aging.101361
  • Klabunde, T., Petrassi, H. M., Oza, V. B., Raman, P., Kelly, J. W., & Sacchettini, J. C. (2000). Rational design of potent human transthyretin amyloid disease inhibitors. Nature Structural Biology, 7(4), 312–321. https://doi.org/10.1038/74082
  • Kumar, S., Chang, Y.-C., Lai, K.-H., & Hwang, T.-L. (2021). Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: Natural product to chemical synthesis. Current Medicinal Chemistry, 28(19), 3773–3786. https://doi.org/10.2174/0929867327999200918100746
  • Lagunas-Rangel, F. A. (2022a). Sequence analysis and comparison of TCTP proteins from human protozoan parasites. Acta Parasitologica, 67(2), 1024–1031. https://doi.org/10.1007/s11686-022-00521-9
  • Lagunas-Rangel, F. A. (2022b). Ribosomal RNA transcription machineries in intestinal protozoan parasites: A bioinformatic analysis. Acta Parasitologica, 67(4), 1788–1799. https://doi.org/10.1007/s11686-022-00612-7
  • Lagunas-Rangel, F. A., & Bermúdez-Cruz, R. M. (2020). Natural compounds that target DNA repair pathways and their therapeutic potential to counteract cancer cells. Frontiers in Oncology, 10(November), 598174. https://doi.org/10.3389/fonc.2020.598174
  • Lee, M.-S., Kao, S.-C., Lemere, C. A., Xia, W., Tseng, H.-C., Zhou, Y., Neve, R., Ahlijanian, M. K., & Tsai, L.-H. (2003). APP processing is regulated by cytoplasmic phosphorylation. Journal of Cell Biology, 163(1), 83–95. https://doi.org/10.1083/jcb.200301115
  • Li, K., Du, Y., Li, L., & Wei, D.-Q. (2019). Bioinformatics approaches for anti-cancer drug discovery. Current Drug Targets, 21(1), 3–17. https://doi.org/10.2174/1389450120666190923162203
  • Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656
  • Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
  • Malumbres, M. (2014). Cyclin-dependent kinases. Genome Biology, 15(6), 122. https://doi.org/10.1186/gb4184
  • Mapelli, M., Massimiliano, L., Crovace, C., Seeliger, M. A., Tsai, L.-H., Meijer, L., & Musacchio, A. (2005). Mechanism of CDK5/p25 binding by CDK inhibitors. Journal of Medicinal Chemistry, 48(3), 671–679. https://doi.org/10.1021/jm049323m
  • Mering, C. v. (2003). STRING: A database of predicted functional associations between proteins. Nucleic Acids Research, 31(1), 258–261. https://doi.org/10.1093/nar/gkg034
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mishra, R., Das, A., & Rana, S. (2021). Resveratrol binding to human complement fragment 5a (h C5a) may modulate the C5aR signaling axes. Journal of Biomolecular Structure and Dynamics, 39(5), 1766–1780. https://doi.org/10.1080/07391102.2020.1738958
  • N′ Soukpoé-Kossi, C. N., St-Louis, C., Beauregard, M., Subirade, M., Carpentier, R., Hotchandani, S., & Tajmir-Riahi, H. A. (2006). Resveratrol binding to human serum albumin. Journal of Biomolecular Structure and Dynamics, 24(3), 277–283. https://doi.org/10.1080/07391102.2006.10507120
  • Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M., & Preissner, R. (2014). SuperPred: Update on drug classification and target prediction. Nucleic Acids Research, 42(W1), W26–W31. https://doi.org/10.1093/nar/gku477
  • Pao, P.-C., & Tsai, L.-H. (2021). Three decades of Cdk5. Journal of Biomedical Science, 28(1), 79. https://doi.org/10.1186/s12929-021-00774-y
  • Patel, L., Shukla, T., Huang, X., Ussery, D. W., & Wang, S. (2020). Machine Learning Methods in Drug Discovery. Molecules, 25(22), 5277. https://doi.org/10.3390/molecules25225277
  • Pizzuti, C., & Rombo, S. E. (2014). Algorithms and tools for protein–protein interaction networks clustering, with a special focus on population-based stochastic methods. Bioinformatics, 30(10), 1343–1352. https://doi.org/10.1093/bioinformatics/btu034
  • Ponder, J. W., & Case, D. A. (2003). Force fields for protein simulations. In Advances in protein chemistry (pp. 27–85). Academic Press. https://doi.org/10.1016/S0065-3233(03)66002-X
  • Rahman, M. H., Akter, R., Bhattacharya, T., Abdel-Daim, M. M., Alkahtani, S., Arafah, M. W., Al-Johani, N. S., Alhoshani, N. M., Alkeraishan, N., Alhenaky, A., Abd‐Elkader, O. H., El-Seedi, H. R., Kaushik, D., & Mittal, V. (2020). Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease. Frontiers in Pharmacology, 11, 619024. https://doi.org/10.3389/fphar.2020.619024
  • Reimand, J., Kull, M., Peterson, H., Hansen, J., & Vilo, J. (2007). g:Profiler—A web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Research, 35(suppl_2), W193–W200. https://doi.org/10.1093/nar/gkm226
  • Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47. https://doi.org/10.1093/nar/gkv007
  • Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616
  • Sajish, M., & Schimmel, P. (2015). A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature, 519(7543), 370–373. https://doi.org/10.1038/nature14028
  • Shukla, P. K., Gautam, L., Sinha, M., Kaur, P., Sharma, S., & Singh, T. P. (2015). Structures and binding studies of the complexes of phospholipase A2 with five inhibitors. Biochimica et Biophysica Acta, 1854(4), 269–277. https://doi.org/10.1016/j.bbapap.2014.12.017
  • Sridhar, J., Akula, N., & Pattabiraman, N. (2006). Selectivity and potency of cyclin-dependent kinase inhibitors. The AAPS Journal, 8(1), E204–E221. https://doi.org/10.1208/aapsj080125
  • Steiner, T. (2002). The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41(1), 48–76. https://doi.org/10.1002/1521-3773(20020104)41:1 < 48::AID-ANIE48 > 3.0.CO;2-U
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15 – Ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L.-H., & Musacchio, A. (2001). Structure and regulation of the CDK5-p25nck5a complex. Molecular Cell, 8(3), 657–669. https://doi.org/10.1016/S1097-2765(01)00343-4
  • Utreras, E., Terse, A., Keller, J., Ladarola, M. J., & Kulkarni, A. B. (2011). Resveratrol inhibits Cdk5 activity through regulation of p35 expression. Molecular Pain, 7, 1744-8069-7-49. https://doi.org/10.1186/1744-8069-7-49
  • van der Lee, R., Szklarczyk, R., Smeitink, J., Smeets, H. J. M., Huynen, M. A., & Vogel, R. (2015). Transcriptome analysis of complex I-deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system. BMC Genomics. 16(1), 691. https://doi.org/10.1186/s12864-015-1883-8
  • Venturelli, S., Berger, A., Böcker, A., Busch, C., Weiland, T., Noor, S., Leischner, C., Schleicher, S., Mayer, M., Weiss, T. S., Bischoff, S. C., Lauer, U. M., & Bitzer, M. (2013). Resveratrol as a pan-HDAC inhibitor alters the acetylation status of jistone proteins in human-derived hepatoblastoma cells. PLoS ONE, 8(8), e73097. https://doi.org/10.1371/journal.pone.0073097
  • Verdura, S., Cuyàs, E., Cortada, E., Brunet, J., Lopez-Bonet, E., Martin-Castillo, B., Bosch-Barrera, J., Encinar, J. A., & Menendez, J. A. (2020). Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging, 12(1), 8–34. https://doi.org/10.18632/aging.102646
  • Vervandier-Fasseur, D., Vang, O., & Latruffe, N. (2017). Special issue: Improvements for resveratrol efficacy. Molecules, 22(10), 1737. https://doi.org/10.3390/molecules22101737
  • Wen, Y., Yu, W. H., Maloney, B., Bailey, J., Ma, J., Marié, I., Maurin, T., Wang, L., Figueroa, H., Herman, M., Krishnamurthy, P., Liu, L., Planel, E., Lau, L.-F., Lahiri, D. K., & Duff, K. (2008). Transcriptional regulation of β-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron, 57(5), 680–690. https://doi.org/10.1016/j.neuron.2008.02.024
  • Wooller, S. K., Benstead-Hume, G., Chen, X., Ali, Y., & Pearl, F. M. G. (2017). Bioinformatics in translational drug discovery. Bioscience Reports, 37(4), BSR20160180. https://doi.org/10.1042/BSR20160180
  • Yokoyama, T., Suzuki, R., & Mizuguchi, M. (2021). Crystal structure of death-associated protein kinase 1 in complex with the dietary compound resveratrol. IUCrJ, 8(1), 131–138. https://doi.org/10.1107/S2052252520015614
  • Zhang, Z., Hamada, H., & Gerk, P. M. (2019). Selectivity of dietary phenolics for inhibition of human monoamine oxidases A and B. BioMed Research International, 2019, 1–12. https://doi.org/10.1155/2019/8361858
  • Zhou, Z., Mou, S., Chen, X., Gong, L., & Ge, W. (2017). Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF‑κB in animal models of acute pharyngitis. Molecular Medicine Reports, 17, 1269–1274. https://doi.org/10.3892/mmr.2017.7933
  • Zielinski, J. M., Luke, J. J., Guglietta, S., & Krieg, C. (2021). High throughput multi-omics approaches for clinical trial evaluation and drug discovery. Frontiers in Immunology, 12, 590742. https://doi.org/10.3389/fimmu.2021.590742
  • Zykova, T. A., Zhu, F., Zhai, X., Ma, W.-Y., Ermakova, S. P., Lee, K. W., Bode, A. M., & Dong, Z. (2008). Resveratrol directly targets COX-2 to inhibit carcinogenesis. Molecular Carcinogenesis, 47(10), 797–805. https://doi.org/10.1002/mc.20437

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.