306
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Carbazole derivatives as promising competitive and allosteric inhibitors of human serotonin transporter: computational pharmacology

, ORCID Icon, ORCID Icon, , , & show all
Pages 993-1014 | Received 04 Oct 2022, Accepted 25 Mar 2023, Published online: 06 Apr 2023

References

  • ADAA. (2021). Understanding anxiety and depression. Anxiety & Depression Association of America. https://adaa.org/understanding-anxiety/depression
  • Ahmad, I., Akand, S. R., Shaikh, M., Pawara, R., Manjula, S. N., & Patel, H. (2022). Synthesis, molecular modelling study of the methaqualone analogues as anti-convulsant agent with improved cognition activity and minimized neurotoxicity. Journal of Molecular Structure, 1251, 131972. https://doi.org/10.1016/j.molstruc.2021.131972
  • Ahmad, I., Pawara, R. H., Girase, R. T., Pathan, A. Y., Jagatap, V. R., Desai, N., Ayipo, Y. O., Surana, S. J., & Patel, H. (2022). Synthesis, molecular modeling study, and quantum-chemical-based investigations of isoindoline-1,3-diones as antimycobacterial agents. ACS Omega, 7(25), 21820–21844. https://doi.org/10.1021/ACSOMEGA.2C01981/SUPPL_FILE/AO2C01981_SI_001.PDF
  • Alapi, E. M., & Fischer, J. (2006). Table of selected analogue classes. In Analogue-based drug discovery (pp. 441-552). Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/3527608001.ch23
  • Allais, G., & Benedetto, C. (2016). Spotlight on frovatriptan: A review of its efficacy in the treatment of migraine. Drug Design, Development and Therapy, 10, 3225–3236. https://doi.org/10.2147/DDDT.S105932
  • Ayipo, Y. O., Yahaya, S. N., Babamale, H. F., Ahmad, I., Patel, H., & Mordi, M. N. (2021). β-Carboline alkaloids induce structural plasticity and inhibition of SARS-CoV-2 nsp3 macrodomain more potently than remdesivir metabolite GS-441524: Computational approach. Turkish Journal of Biology, 45(SI-1), 503–517. https://doi.org/10.3906/biy-2106-64
  • Ayipo, Y. O., Alananzeh, W. A., Yahaya, S. N., & Mordi, M. N. (2022). Molecular modelling and virtual screening to identify new piperazine derivatives as potent human 5-HT1A antagonists and reuptake inhibitors. Combinatorial Chemistry & High Throughput Screening, 25, 1–20. https://doi.org/10.2174/1386207325666220524094913
  • Ayipo, Y. O., Alananzeh, W. A., Ahmad, I., Patel, H., & Mordi, M. N. (2022). Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. Journal of Biomolecular Structure and Dynamics, 0(0), 1–17. https://doi.org/10.1080/07391102.2022.2104376
  • Bauman, M. D., Schumann, C. M., Carlson, E. L., Taylor, S. L., Vázquez-Rosa, E., Cintrón-Pérez, C. J., Shin, M. K., Williams, N. S., & Pieper, A. A. (2018). Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Translational Psychiatry, 8(1), 1–11. https://doi.org/10.1038/s41398-018-0244-1
  • Berger, N. D., Gadotti, V. M., Petrov, R. R., Chapman, K., Diaz, P., & Zamponi, G. W. (2014). NMP-7 inhibits chronic inflammatory and neuropathic pain via block of Cav3.2T-type calcium channels and activation of CB2 receptors. Molecular Pain, 10(1), 77. https://doi.org/10.1186/1744-8069-10-77
  • Berger, S. I., & Iyengar, R. (2009). Network analyses in systems pharmacology. Bioinformatics (Oxford, England), 25(19), 2466–2472. https://doi.org/10.1093/bioinformatics/btp465
  • Branco, J. C., Tomé, A. M., Cruz, M. R., & Filipe, A. (2011). Pirlindole in the treatment of depression and fibromyalgia syndrome. Clinical Drug Investigation, 31(10), 675–689. https://doi.org/10.2165/11595410-000000000-00000
  • Brigitta, B. (2002). Pathophysiology of depression and mechanisms of treatment. Dialogues in Clinical Neuroscience, 4(1), 7–20. https://doi.org/10.31887/dcns.2002.4.1/bbondy
  • Brody, T. (2018). Food effect studies. In FDA’s drug review process and the package label (pp. 35-100). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814647-7.00003-8
  • Calderone, V., Testai, L., Martinotti, E., Del Tacca, M., & Breschi, M. C. (2010). Drug-induced block of cardiac HERG potassium channels and development of torsade de pointes arrhythmias: The case of antipsychotics. Journal of Pharmacy and Pharmacology, 57(2), 151–161. https://doi.org/10.1211/0022357055272
  • Castro-Alvarez, A., Costa, A. M., & Vilarrasa, J. (2017). The performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules, 22(1), 1-14. https://doi.org/10.3390/molecules22010136
  • Chaudhari, B., Patel, H., Thakar, S., Ahmad, I., & Bansode, D. (2022). Optimizing the sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach. In Silico Pharmacology, 10(1), 10. https://doi.org/10.1007/s40203-022-00125-1
  • Chilmonczyk, Z., Bojarski, A. J., Pilc, A., & Sylte, I. (2017). Serotonin transporter and receptor ligands with antidepressant activity as neuroprotective and proapoptotic agents. Pharmacological Reports: PR, 69(3), 469–478. https://doi.org/10.1016/j.pharep.2017.01.011
  • Coleman, J. A., Green, E. M., & Gouaux, E. (2016). X-ray structures and mechanism of the human serotonin transporter. Nature, 532(7599), 334–339. https://doi.org/10.1038/nature17629
  • Cowen, P. J., & Browning, M. (2015). What has serotonin to do with depression?. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 14(2), 158–160. https://doi.org/10.1002/wps.20229
  • D. E. Shaw Research & Schrödinger Release. (2021). Desmond molecular dynamics system. Maestro-Desmond interoperability tools. In DE Shaw Research.
  • de Sousa, D. P., Schefer, R. R., Brocksom, U., & Brocksom, T. J. (2006). Synthesis and antidepressant evaluation of three para-benzoquinone mono-oximes and their oxy derivatives. Molecules (Basel, Switzerland), 11(2), 148–155. https://doi.org/10.3390/11020148
  • Deodhar, M., Al Rihani, S. B., Arwood, M. J., Darakjian, L., Dow, P., Turgeon, J., & Michaud, V. (2020). Mechanisms of CYP450 Inhibition: Understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics, 12(9), 1–18. https://doi.org/10.3390/PHARMACEUTICS12090846
  • Fronza, M. G., Pinto Brod, L. M., Casaril, A. M., Sacramento, M., Alves, D., & Savegnago, L. (2017). Computational and biological evidences on the serotonergic involvement of SeTACN antidepressant-like effect in mice. Plos One, 12(11), e0187445. https://doi.org/10.1371/journal.pone.0187445
  • Gangadharan, N. T., Venkatachalam, A. B., & Sugathan, S. (2017). High-throughput and in silico screening in drug discovery. Bioresources and Bioprocess in Biotechnology, 1, 247–273. https://doi.org/10.1007/978-981-10-3573-9
  • Gao, Y., Gesenberg, C., & Zheng, W. (2017). Oral formulations for preclinical studies: Principle, design, and development considerations. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice: Second Edition, ch 17, 455–495. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802447-8.00017-0
  • Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor-ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/s12551-013-0130-2
  • Han, L. (2021). Modulation of the blood–brain barrier for drug delivery to brain. Pharmaceutics, 13(12), 1-19. https://doi.org/10.3390/PHARMACEUTICS13122024
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hart, L. R., Lebedenko, C. G., Mitchell, S. M., Daso, R. E., & Banerjee, I. A. (2022). In silico studies of tumor targeted peptide‐conjugated natural products for targeting over‐expressed receptors in breast cancer cells using molecular docking, molecular dynamics and MMGBSA calculations. Applied Sciences (Switzerland), 12(1), 515. https://doi.org/10.3390/APP12010515/S1
  • Hegden, P. R., Emmanuel, B. D., Beevi, J., & Dharan, S. S. (2020). A concise review on carbazole derivatives and its biological activities. Journal of Pharmaceutical Sciences and Research, 12(10), 1271–1277.
  • Holshoe, J. M. (2016). Antidepressants and sleep. The Curated Reference Collection in Neuroscience and Biobehavioral Psychology, August 2015, 617–620. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809324-5.00973-1
  • Hughes, J. P., Rees, S. S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x
  • Huskisson, E. C. (1982). Carprofen. European Journal of Rheumatology and Inflammation, 5(4), 333–334. https://doi.org/10.2165/00128415-200812030-00045
  • Immadisetty, K. (2015). Modeling the binding of inhibitors/drugs to the human serotonin transporter [Doctoral dissertation]. Duquesne University.
  • Ivanova, L., Tammiku-Taul, J., García-Sosa, A. T., Sidorova, Y., Saarma, M., & Karelson, M. (2018). Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRα1 and small-molecule ligands. ACS Omega, 3(9), 11407–11414. https://doi.org/10.1021/ACSOMEGA.8B01524/ASSET/IMAGES/LARGE/AO-2018-01524B_0008.JPEG
  • Jean, B. (2017). Modeling the binding of neurotransmitter transporter inhibitors with molecular dynamics and free energy calculations [Doctoral dissertation]. Duquesne University. https://dsc.duq.edu/etd/240
  • Lexow, M., Wernecke, K., Schmid, G. L., Sultzer, R., Bertsche, T., & Schiek, S. (2021). Considering additive effects of polypharmacy: Analysis of adverse events in geriatric patients in long-term care facilities. Wiener Klinische Wochenschrift, 133(15–16), 816–824. https://doi.org/10.1007/s00508-020-01750-6
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development q settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Lynch, T., & Price, A. (2007). The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American Family Physician, 76(3), 391–6.
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Moreira, L. K. D. S., Silva, R. R., Silva, D. M., Mendes, M. A. S., de Brito, A. F., de Carvalho, F. S., Sanz, G., Rodrigues, M. F., da Silva, A. C. G., Thomaz, D. V., de Oliveira, V., Vaz, G. B., Lião, M. L., Valadares, M. C., Gil, E. D. S., Costa, E. A., Noël, F., & Menegatti, R. (2022). Anxiolytic- and antidepressant-like effects of new phenylpiperazine derivative LQFM005 and its hydroxylated metabolite in mice. Behavioural Brain Research, 417(1), 113582. https://doi.org/10.1016/j.bbr.2021.113582
  • NaAllah, A., Ayipo, Y. O., Komolafe, D. I., Solihu, S., Bamidele, B., Alabi, M. A., Balogun, A.-A., Abdulazeez, A. T., & Mordi, M. N. (2021). Phytochemical screening and in silico pharmacological profiling of ethanolic extract of Aframomum melegueta for prostate carcinoma. Journal of Applied Pharmaceutical Science, 11(7), 132-145. https://doi.org/10.7324/JAPS.2021.110715
  • Navratna, V., Tosh, D. K., Jacobson, K. A., & Gouaux, E. (2018). Thermostabilization and purification of the human dopamine transporter (hDAT) in an inhibitor and allosteric ligand bound conformation. Plos One, 13(7), e0200085. https://doi.org/10.1371/journal.pone.0200085
  • Obaidullah, A. J., Alanazi, M. M., Alsaif, N. A., Alanazi, A. S., Albassam, H., Az, A., Alwassil, O. I., Alqahtani, A., M., & Tareq, A. M. (2022). Network pharmacology- and molecular docking-based identification of potential phytocompounds from Argyreia capitiformis in the treatment of inflammation. Evidence-Based Complementary and Alternative Medicine: eCAM, 2022, 8037488. https://doi.org/10.1155/2022/8037488
  • Park, Y. S., & Sung, K. W. (2019). Selective serotonin reuptake inhibitor escitalopram inhibits 5-HT3 receptor currents in NCB-20 cells. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 23(6), 509–517. https://doi.org/10.4196/kjpp.2019.23.6.509
  • Peng, J., Zhang, K., Wang, L., Peng, F., Zhang, C., Long, K., Chen, J., Zhou, X., Gao, P., & Fan, G. (2022). Integrating network pharmacology and molecular docking to explore the potential mechanism of Xinguan No. 3 in the treatment of COVID-19. Open Chemistry, 20(1), 570–582. https://doi.org/10.1515/chem-2022-0178
  • Peng, Y., McCorvy, J. D., Harpsøe, K., Lansu, K., Yuan, S., Popov, P., Qu, L., Pu, M., Che, T., Nikolajsen, L. F., Huang, X.-P., Wu, Y., Shen, L., Bjørn-Yoshimoto, W. E., Ding, K., Wacker, D., Han, G. W., Cheng, J., Katritch, V., … Liu, Z.-J. (2018). 5-HT2C Receptor structures reveal the structural basis of GPCR polypharmacology. Cell, 172(4), 719–730.e14. https://doi.org/10.1016/j.cell.2018.01.001
  • Peng, Y., Zhao, S., Wu, Y., Cao, H., Xu, Y., Liu, X., Shui, W., Cheng, J., Zhao, S., Shen, L., Ma, J., Quinn, R. J., Stevens, R. C., Zhong, G., & Liu, Z.-J. (2018). Identification of natural products as novel ligands for the human 5-HT2C receptor. Biophysics Reports, 4(1), 50–61. https://doi.org/10.1007/s41048-018-0047-1
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Plenge, P., Abramyan, A. M., Sørensen, G., Mørk, A., Weikop, P., Gether, U., Bang-Andersen, B., Shi, L., & Loland, C. J. (2020). The mechanism of a high-affinity allosteric inhibitor of the serotonin transporter. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-15292-y
  • Plenge, P., Yang, D., Salomon, K., Laursen, L., Kalenderoglou, I. E., Newman, A. H., Gouaux, E., Coleman, J. A., & Loland, C. J. (2021). The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nature Communications, 12(1), 1-12. https://doi.org/10.1038/s41467-021-25363-3
  • Potamitis, C., Siakouli, D., Papavasileiou, K. D., Boulaka, A., Ganou, V., Roussaki, M., Calogeropoulou, T., Zoumpoulakis, P., Alexis, M. N., Zervou, M., & Mitsiou, D. J. (2019). Discovery of new non-steroidal selective glucocorticoid receptor agonists. The Journal of Steroid Biochemistry and Molecular Biology, 186, 142–153. https://doi.org/10.1016/j.jsbmb.2018.10.007
  • Prieto-Martínez, F. D., López-López, E., Eurídice Juárez-Mercado, K., & Medina-Franco, J. L. (2019). Computational drug design methods—current and future perspectives. In Silico Drug Design, 3, 19–44. https://doi.org/10.1016/b978-0-12-816125-8.00002-x
  • Que, W., Chen, M., Yang, L., Zhang, B., Zhao, Z., Liu, M., Cheng, Y., & Qiu, H. (2021). A network pharmacology-based investigation on the bioactive ingredients and molecular mechanisms of Gelsemium elegans Benth against colorectal cancer. BMC Complementary Medicine and Therapies, 21(1), 1–18. https://doi.org/10.1186/s12906-021-03273-7
  • Ragno, R., Esposito, V., Di Mario, M., Masiello, S., Viscovo, M., & Cramer, R. D. (2020). Teaching and learning computational drug design: Student investigations of 3D quantitative structure-activity relationships through web applications. Journal of Chemical Education, 97(7), 1922–1930. https://doi.org/10.1021/acs.jchemed.0c00117
  • Ramadan, A. M., & Mansour, I. A. (2020). Could ketamine be the answer to treating treatment-resistant major depressive disorder?. General Psychiatry, 33(5), e100227. https://doi.org/10.1136/gpsych-2020-100227
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data?. Molecules, 23(5), 1–17. https://doi.org/10.3390/molecules23051038
  • Rudnick, G. (2007). SERT, serotonin transporter. In xPharm: The comprehensive pharmacology reference (pp. 1–6). Elsevier Inc. https://doi.org/10.1016/B978-008055232-3.60442-8
  • Sahli, Z. T., Banerjee, P., & Tarazi, F. I. (2016). The preclinical and clinical effects of vilazodone for the treatment of major depressive disorder. Expert Opinion on Drug Discovery, 11(5), 515–523. https://doi.org/10.1517/17460441.2016.1160051
  • Samdani, M. N., Morshed, N., Reza, R., Asaduzzaman, M., & Islam, A. B. M. M. K. (2022). Targeting SARS-CoV-2 non-structural protein 13 via helicase-inhibitor-repurposing and non-structural protein 16 through pharmacophore-based screening. Molecular Diversity, 12, 1–19. https://doi.org/10.1007/s11030-022-10468-8
  • Schaduangrat, N., Lampa, S., Simeon, S., Gleeson, M. P., Spjuth, O., & Nantasenamat, C. (2020). Towards reproducible computational drug discovery. Journal of Cheminformatics, 12(1), 1–30. https://doi.org/10.1186/s13321-020-0408-x
  • Shadrina, M., Bondarenko, E. A., & Slominsky, P. A. (2018). Genetics factors in major depression disease. Frontiers in Psychiatry, 9(JUL), 334. https://doi.org/10.3389/fpsyt.2018.00334
  • Shahwar, D., Saeed, M., Hazrat, H., Javaid, S., Mohsin, S., Ul-Haq, Z., & Chotani, M. A. (2022). The nucleoside adenosine inhibits intracellular microvascular α 2C-adrenoceptor surface trafficking. Journal of Molecular Structure, 1267, 133637. https://doi.org/10.1016/j.molstruc.2022.133637
  • Shayan, S., Jamaran, S., Askandar, R. H., Rahimi, A., Elahi, A., Farshadfar, C., & Ardalan, N. (2021). The SARS-Cov-2 Proliferation blocked by a novel and potent main protease inhibitor via computer-aided drug design. Iranian Journal of Pharmaceutical Research, 20(3), 399-418. https://doi.org/10.22037/IJPR.2021.114846.15061
  • Sheikh-Taha, M., & Asmar, M. (2021). Polypharmacy and severe potential drug-drug interactions among older adults with cardiovascular disease in the United States. BMC Geriatrics, 21(1), 1–6. https://doi.org/10.1186/s12877-021-02183-0
  • Si, T., & Wang, P. (2014). When is antidepressant polypharmacy appropriate in the treatment of depression?. Shanghai Archives of Psychiatry, 26(6), 357–359. https://doi.org/10.11919/j.issn.1002-0829.214152
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Smithson, J., & Mitchell, P. B. (2019). Antidepressants. Side Effects of Drugs Annual, 41, 13–26. https://doi.org/10.1016/bs.seda.2019.10.002
  • Song, S., Zhou, J., Li, Y., Liu, J., Li, J., & Shu, P. (2022). Network pharmacology and experimental verification based research into the effect and mechanism of Aucklandiae Radix–Amomi Fructus against gastric cancer. Scientific Reports, 12(1), 1–30. https://doi.org/10.1038/s41598-022-13223-z
  • Sorokina, M., & Steinbeck, C. (2020). Review on natural products databases: Where to find data in 2020. Journal of Cheminformatics, 12(1), 20. https://doi.org/10.1186/s13321-020-00424-9
  • Sundaram, K., Ravi, S., Thenmozhi, M., & Mohanraj, V. (2018). Synthesis, single crystal XRD and molecular docking of 3-α-carboxy ethyl rhodanine. Asian Journal of Chemistry, 30(7), 1446–1450. https://doi.org/10.14233/ajchem.2018.21161
  • Tijani, A. O., Nunez, E., Singh, K., Khanna, G., & Puri, A. (2021). Transdermal route: A viable option for systemic delivery of antidepressants. Journal of Pharmaceutical Sciences, 110(9), 3129–3149. https://doi.org/10.1016/J.XPHS.2021.05.015
  • Tomar, V., Mazumder, M., Chandra, R., Yang, J., & Sakharkar, M. K. (2018). Small molecule drug design. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 13, 741–760. https://doi.org/10.1016/B978-0-12-809633-8.20157-X
  • Vann, M. R. (2021). 12 Surprising Facts About Depression. Everyday Health. https://www.everydayhealth.com/hs/major-depression-health-well-being/surprising-depression-facts/
  • Wang, G., Han, T., Nijhawan, D., Theodoropoulos, P., Naidoo, J., Yadavalli, S., Mirzaei, H., Pieper, A. A., Ready, J. M., & McKnight, S. L. (2014). P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell, 158(6), 1324–1334. https://doi.org/10.1016/j.cell.2014.07.040
  • Watanabe, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., Nagao, C., Ohashi, R., & Mizuguchi, K. (2018). Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. Molecular Pharmaceutics, 15(11), 5302–5311. https://doi.org/10.1021/ACS.MOLPHARMACEUT.8B00785/ASSET/IMAGES/LARGE/MP-2018-007855_0006.JPEG
  • Wood, P. L., & McQuade, P. S. (1984). Ciclindole and flucindole: Novel tetrahydrocarbazolamine neuroleptics. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 8(4–6), 773–777. https://doi.org/10.1016/0278-5846(84)90057-5
  • Wray, N. H., & Rasenick, M. M. (2019). Lipid rafts in psychiatry. In Advances in Pharmacology. (1st ed., Vol. 86). Elsevier Inc. https://doi.org/10.1016/bs.apha.2019.04.001
  • Yuen, H., Hung, A., Yang, A. W. H., & Lenon, G. B. (2020). Mechanisms of action of cassiae semen for weight management: A computational molecular docking study of serotonin receptor 5-HT2C. International Journal of Molecular Sciences, 21(4), 1326. https://doi.org/10.3390/ijms21041326
  • Zhou, Z., Zhen, J., Karpowich, N. K., Law, C. J., Reith, M. E. A., & Wang, D. N. (2009). Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nature Structural & Molecular Biology, 16(6), 652–657. https://doi.org/10.1038/nsmb.1602

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.