193
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fascin − F-actin interaction studied by molecular dynamics simulation and protein network analysis

, , , , , & show all
Pages 435-444 | Received 02 Feb 2023, Accepted 14 Mar 2023, Published online: 08 Apr 2023

References

  • Angelini, T. E., Sanders, L. K., Liang, H., Wriggers, W., Tang, J. X., & Wong, G. C. L. (2005). Structure and dynamics of condensed multivalent ions within polyelectrolyte bundles: A combined x-ray diffraction and solid-state NMR study. Journal of Physics: Condensed Matter, 17(14), S1123–S1135. https://doi.org/10.1088/0953-8984/17/14/001
  • Aramaki, S., Mayanagi, K., Jin, M., Aoyama, K., & Yasunaga, T. (2016). Filopodia formation by crosslinking of F-actin with fascin in two different binding manners. Cytoskeleton (Hoboken, N.J.), 73(7), 365–374. https://doi.org/10.1002/cm.21309
  • Assaran Darban, R., Shareghi, B., Asoodeh, A., & Chamani, J. (2017). Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. Journal of Biomolecular Structure & Dynamics, 35(16), 3648–3662. https://doi.org/10.1080/07391102.2016.1264892
  • Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., & Plastino, J. (2014). Actin dynamics, architecture, and mechanics in cell motility. Physiological Reviews, 94(1), 235–263. https://doi.org/10.1152/physrev.00018.2013
  • Case, D. A., Berryman, J. T., Betz, R. M., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Luchko, T., Luo, R., Madej, B., Merz, K. M., Monard, G., Needham, P., Nguyen, H., Nguyen, H. T., Omelyan, I., Onufriev, A., Roe, D. R., Roitberg, A., Salomon-Ferrer, R., Simmerling, C. L., Smith, W., Swails, J., Walker, R. C., Wang, J., Wolf, R. M., Wu, X., York, D. M., … Kollman, P. A. (2014). The FF14SB force field, AMBER 14 Reference Manual 29–31. 2014.
  • Castaneda, N., Zheng, T., Rivera-Jacquez, H. J., Lee, H. J., Hyun, J., Balaeff, A., Huo, Q., & Kang, H. (2018). Cations modulate actin bundle mechanics, assembly dynamics, and structure. The Journal of Physical Chemistry. B, 122(14), 3826–3835. https://doi.org/10.1021/acs.jpcb.8b00663
  • Chen, C., Xie, B., Li, Z., Chen, L., Chen, Y., Zhou, J., Ju, S., Zhou, Y., Zhang, X., Zhuo, W., Yang, J., Mao, M., Xu, L., & Wang, L. (2022). Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death & Disease, 13(2), 150. https://doi.org/10.1038/s41419-022-04579-1
  • Chen, L., Yang, S., Jakoncic, J., Zhang, J. J., & Huang, X. Y. (2010). Migrastatin analogues target fascin to block tumour metastasis. Nature, 464(7291), 1062–1066. https://doi.org/10.1038/nature08978
  • Cheng, Y. W., Zeng, F. M., Li, D. J., Wang, S. H., He, J. Z., Guo, Z. C., Nie, P. J., Wu, Z. Y., Shi, W. Q., Wen, B., Xu, X. E., Liao, L. D., Li, Z. M., Wu, J. Y., Zhan, J., Zhang, H. Q., Chang, Z. J., Zhang, K., Xu, L. Y., & Li, E. M. (2021). P300/CBP-associated factor (PCAF)-mediated acetylation of Fascin at lysine 471 inhibits its actin-bundling activity and tumor metastasis in esophageal cancer. Cancer Communications (London, England), 41(12), 1398–1416. https://doi.org/10.1002/cac2.12221
  • Case, D. A., Belfon, H. M. A., Ben-Shalom, K., Brozell, I. Y., Cerutti, S. R., Cheatham, D. S., Iii, T. E., Cisneros, G. A., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., Jin, C., … Kollman, P. A. (2021). Amber 2021, University of California, San Francisco, 2020. Amber 20.
  • Dominguez, R., & Holmes, K. C. (2011). Actin structure and function. Annual Review of Biophysics, 40, 169–186. https://doi.org/10.1146/annurev-biophys-042910-155359
  • Estes, J. E., Selden, L. A., & Gershman, L. C. (1987). Tight binding of divalent cations to monomeric actin. Binding kinetics support a simplified model. Journal of Biological Chemistry. 262(11), 4952–4957. https://doi.org/10.1016/S0021-9258(18)61137-8
  • Fas, B. A., Maiani, E., Sora, V., Kumar, M., Mashkoor, M., Lambrughi, M., Tiberti, M., & Papaleo, E. (2021). The conformational and mutational landscape of the ubiquitin-like marker for autophagosome formation in cancer. Autophagy, 17(10), 2818–2841. https://doi.org/10.1080/15548627.2020.1847443
  • Fife, C. M., McCarroll, J. A., & Kavallaris, M. (2014). Movers and shakers: Cell cytoskeleton in cancer metastasis. British Journal of Pharmacology, 171(24), 5507–5523. https://doi.org/10.1111/bph.12704
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. Journal of Molecular Biology, 330(4), 891–913. https://doi.org/10.1016/s0022-2836(03)00610-7
  • Gupta, I., Vranic, S., Al-Thawadi, H., & Al Moustafa, A. E. (2021). Fascin in gynecological cancers: An update of the literature. Cancers, 13(22), 5760. https://doi.org/10.3390/cancers13225760
  • Hocky, G. M., Baker, J. L., Bradley, M. J., Sinitskiy, A. V., De La Cruz, E. M., & Voth, G. A. (2016). Cations stiffen actin filaments by adhering a key structural element to adjacent subunits. The Journal of Physical Chemistry. B, 120(20), 4558–4567. https://doi.org/10.1021/acs.jpcb.6b02741
  • Huang, D., Tian, S., Qi, Y., & Zhang, J. Z. H. (2020). Binding Modes of Small-Molecule Inhibitors to the EED Pocket of PRC2. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 21(3), 263–271. https://doi.org/10.1002/cphc.201900903
  • Jónsdóttir, L. B., Ellertsson, B., Invernizzi, G., Magnúsdóttir, M., Thorbjarnardóttir, S. H., Papaleo, E., & Kristjánsson, M. M. (2014). The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase. Biochimica et Biophysica Acta, 1844(12), 2174–2181. https://doi.org/10.1016/j.bbapap.2014.08.011
  • Jost Lopez, A., Quoika, P. K., Linke, M., Hummer, G., & Köfinger, J. (2020). Quantifying protein-protein interactions in molecular simulations. The Journal of Physical Chemistry. B, 124(23), 4673–4685. https://doi.org/10.1021/acs.jpcb.9b11802
  • Kalhori, F., Yazdyani, H., Khademorezaeian, F., Hamzkanloo, N., Mokaberi, P., Hosseini, S., & Chamani, J. (2022). Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence: The Journal of Biological and Chemical Luminescence, 37(11), 1836–1845. https://doi.org/10.1002/bio.4360
  • Kane, R. E. (1975). Preparation and purification of polymerized actin from sea urchin egg extracts. The Journal of Cell Biology, 66(2), 305–315. https://doi.org/10.1083/jcb.66.2.305
  • Kaupbayeva, B., Boye, S., Munasinghe, A., Murata, H., Matyjaszewski, K., Lederer, A., Colina, C. M., & Russell, A. J. (2021). Molecular dynamics-guided design of a functional protein-ATRP conjugate that eliminates protein-protein interactions. Bioconjugate Chemistry, 32(4), 821–832. https://doi.org/10.1021/acs.bioconjchem.1c00098
  • Kelley, L. C., Shahab, S., & Weed, S. A. (2008). Actin cytoskeletal mediators of motility and invasion amplified and overexpressed in head and neck cancer. Clinical & Experimental Metastasis, 25(4), 289–304. https://doi.org/10.1007/s10585-008-9154-6
  • Keskin, O., Tuncbag, N., & Gursoy, A. (2016). Predicting protein-protein interactions from the molecular to the proteome level. Chemical Reviews, 116(8), 4884–4909. https://doi.org/10.1021/acs.chemrev.5b00683
  • Khashkhashi-Moghadam, S., Ezazi-Toroghi, S., Kamkar-Vatanparast, M., Jouyaeian, P., Mokaberi, P., Yazdyani, H., Amiri-Tehranizadeh, Z., Reza Saberi, M., & Chamani, J. (2022). Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. Journal of Molecular Liquids. 356, 119042. https://doi.org/10.1016/j.molliq.2022.119042
  • Kureishy, N., Sapountzi, V., Prag, S., Anilkumar, N., & Adams, J. C. (2002). Fascins, and their roles in cell structure and function. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 24(4), 350–361. https://doi.org/10.1002/bies.10070
  • Li, A., Dawson, J. C., Forero-Vargas, M., Spence, H. J., Yu, X., König, I., Anderson, K., & Machesky, L. M. (2010). The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Current Biology : CB, 20(4), 339–345. https://doi.org/10.1016/j.cub.2009.12.035
  • Lin, S., Li, Y., Wang, D., Huang, C., Marino, D., Bollt, O., Wu, C., Taylor, M. D., Li, W., DeNicola, G. M., Hao, J., Singh, P. K., & Yang, S. (2021). Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Letters, 518, 230–242. https://doi.org/10.1016/j.canlet.2021.07.025
  • Lin, S., Lu, S., Mulaj, M., Fang, B., Keeley, T., Wan, L., Hao, J., Muschol, M., Sun, J., & Yang, S. (2016). Monoubiquitination inhibits the actin bundling activity of fascin. The Journal of Biological Chemistry, 291(53), 27323–27333. https://doi.org/10.1074/jbc.M116.767640
  • Machesky, L. M. (2008). Lamellipodia and filopodia in metastasis and invasion. FEBS Letters, 582(14), 2102–2111. https://doi.org/10.1016/j.febslet.2008.03.039
  • Maheri, H., Hashemzadeh, F., Shakibapour, N., Kamelniya, E., Malaekeh-Nikouei, B., Mokaberi, P., & Chamani, J. (2022). Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). Journal of Molecular Structure, 1269, 133803. https://doi.org/10.1016/j.molstruc.2022.133803
  • Maier, M., Müller, K. W., Heussinger, C., Köhler, S., Wall, W. A., Bausch, A. R., & Lieleg, O. (2015). A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network. The European Physical Journal. E, Soft Matter, 38(5), 136. https://doi.org/10.1140/epje/i2015-15050-3
  • Marjani, N., Dareini, M., Asadzade-Lotfabad, M., Pejhan, M., Mokaberi, P., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: Spectroscopic, calorimetric, and molecular dynamics approaches. Luminescence : The Journal of Biological and Chemical Luminescence, 37(2), 310–322. https://doi.org/10.1002/bio.4173
  • Molinie, N., & Gautreau, A. (2018). The Arp2/3 regulatory system and its deregulation in cancer. Physiological Reviews, 98(1), 215–238. https://doi.org/10.1152/physrev.00006.2017
  • Morita, R., Nakano, K., Shigeta, Y., & Harada, R. (2020). Molecular mechanism for the actin-binding domain of α-actinin ain1 elucidated by molecular dynamics simulations and mutagenesis experiments. The Journal of Physical Chemistry. B, 124(39), 8495–8503. https://doi.org/10.1021/acs.jpcb.0c04623
  • Murakami, K., Yasunaga, T., Noguchi, T. Q., Gomibuchi, Y., Ngo, K. X., Uyeda, T. Q., & Wakabayashi, T. (2010). Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell, 143(2), 275–287. https://doi.org/10.1016/j.cell.2010.09.034
  • Oda, T., Iwasa, M., Aihara, T., Maéda, Y., & Narita, A. (2009). The nature of the globular- to fibrous-actin transition. Nature, 457(7228), 441–445. https://doi.org/10.1038/nature07685
  • Ohashi, K. (2015). Roles of cofilin in development and its mechanisms of regulation. Development, Growth & Differentiation, 57(4), 275–290. https://doi.org/10.1111/dgd.12213
  • Olsson, M. H., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Ono, S., Yamakita, Y., Yamashiro, S., Matsudaira, P. T., Gnarra, J. R., Obinata, T., & Matsumura, F. (1997). Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. The Journal of Biological Chemistry, 272(4), 2527–2533. https://doi.org/10.1074/jbc.272.4.2527
  • Otterbein, L. R., Graceffa, P., & Dominguez, R. (2001). The crystal structure of uncomplexed actin in the ADP state. Science (New York, N.Y.), 293(5530), 708–711. https://doi.org/10.1126/science.1059700
  • Otto, J. J., Kane, R. E., & Bryan, J. (1979). Formation of filopodia in coelomocytes: Localization of fascin, a 58,000 dalton actin cross-linking protein. Cell, 17(2), 285–293. https://doi.org/10.1016/0092-8674(79)90154-5
  • Pasi, M., Tiberti, M., Arrigoni, A., & Papaleo, E. (2012). xPyder: A PyMOL plugin to analyze coupled residues and their networks in protein structures. Journal of Chemical Information and Modeling, 52(7), 1865–1874. https://doi.org/10.1021/ci300213c
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pollard, T. D. (2016). Actin and actin-binding proteins. Cold Spring Harbor Perspectives in Biology, 8(8), a018226. https://doi.org/10.1101/cshperspect.a018226
  • Pollard, T. D., & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465. https://doi.org/10.1016/s0092-8674(03)00120-x
  • Pollard, T. D., & Cooper, J. A. (2009). Actin, a central player in cell shape and movement. Science (New York, N.Y.), 326(5957), 1208–1212. https://doi.org/10.1126/science.1175862
  • Rao, J. N., Madasu, Y., & Dominguez, R. (2014). Mechanism of actin filament pointed-end capping by tropomodulin. Science (New York, N.Y.), 345(6195), 463–467. https://doi.org/10.1126/science.1256159
  • Saunders, M. G., & Voth, G. A. (2011). Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis. Journal of Molecular Biology, 413(1), 279–291. https://doi.org/10.1016/j.jmb.2011.07.068
  • Saunders, M. G., & Voth, G. A. (2012). Comparison between actin filament models: coarse-graining reveals essential differences. Structure (London, England: 1993), 20(4), 641–653. https://doi.org/10.1016/j.str.2012.02.008
  • Selden, L. A., Gershman, L. C., & Estes, J. E. (1986). A kinetic comparison between Mg-actin and Ca-actin. Journal of Muscle Research and Cell Motility, 7(3), 215–224. https://doi.org/10.1007/BF01753554
  • Sengupta, D., & Kundu, S. (2012). Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization. BMC Bioinformatics, 13, 142. https://doi.org/10.1186/1471-2105-13-142
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure & Dynamics, 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Søndergaard, C. R., Olsson, M. H., Rostkowski, M., & Jensen, J. H. (2011). Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. Journal of Chemical Theory and Computation, 7(7), 2284–2295. https://doi.org/10.1021/ct200133y
  • Sora, V., Tiberti, M., Robbani, S. M., Rubin, J., & Papaleo, E. (2020). PyInteraph2 and PyInKnife2 to analyze networks in protein structural ensembles. Cold Spring Harbor Laboratory.
  • Šoštarić, N., & van Noort, V. (2021). Molecular dynamics shows complex interplay and long-range effects of post-translational modifications in yeast protein interactions. PLoS Computational Biology, 17(5), e1008988. https://doi.org/10.1371/journal.pcbi.1008988
  • Svitkina, T. (2018). The actin cytoskeleton and actin-based motility. Cold Spring Harbor Perspectives in Biology, 10(1), doi: 10.1101/cshperspect.a018267
  • Taheri, R., Hamzkanlu, N., Rezvani, Y., Niroumand, S., Samandar, F., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. Journal of Molecular Liquids. 368, 120826. https://doi.org/10.1016/j.molliq.2022.120826
  • Tang, J. X., & Janmey, P. A. (1996). The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. The Journal of Biological Chemistry, 271(15), 8556–8563. https://doi.org/10.1074/jbc.271.15.8556
  • Tiberti, M., Invernizzi, G., Lambrughi, M., Inbar, Y., Schreiber, G., & Papaleo, E. (2014). PyInteraph: A framework for the analysis of interaction networks in structural ensembles of proteins. Journal of Chemical Information and Modeling, 54(5), 1537–1551. https://doi.org/10.1021/ci400639r
  • Tobacman, L. S., & Korn, E. D. (1983). The kinetics of actin nucleation and polymerization. The Journal of Biological Chemistry, 258(5), 3207–3214. https://doi.org/10.1016/S0021-9258(18)32850-3
  • von der Ecken, J., Müller, M., Lehman, W., Manstein, D. J., Penczek, P. A., & Raunser, S. (2015). Structure of the F-actin-tropomyosin complex. Nature, 519(7541), 114–117. https://doi.org/10.1038/nature14033
  • Wegner, A. (1976). Head to tail polymerization of actin. Journal of Molecular Biology, 108(1), 139–150. https://doi.org/10.1016/s0022-2836(76)80100-3
  • Wu, X., Wen, B., Lin, L., Shi, W., Li, D., Cheng, Y., Xu, L. Y., Li, E. M., & Dong, G. (2021). New insights into the function of Fascin in actin bundling: A combined theoretical and experimental study. The International Journal of Biochemistry & Cell Biology, 139, 106056. https://doi.org/10.1016/j.biocel.2021.106056
  • Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current Opinion in Cell Biology, 17(5), 559–564. https://doi.org/10.1016/j.ceb.2005.08.002
  • Yamakita, Y., Ono, S., Matsumura, F., & Yamashiro, S. (1996). Phosphorylation of human fascin inhibits its actin binding and bundling activities. The Journal of Biological Chemistry, 271(21), 12632–12638. https://doi.org/10.1074/jbc.271.21.12632
  • Yang, S., Huang, F. K., Huang, J., Chen, S., Jakoncic, J., Leo-Macias, A., Diaz-Avalos, R., Chen, L., Zhang, J. J., & Huang, X. Y. (2013). Molecular mechanism of fascin function in filopodial formation. The Journal of Biological Chemistry, 288(1), 274–284. https://doi.org/10.1074/jbc.M112.427971
  • Ye, J., Li, L., & Hu, Z. (2021). Exploring the molecular mechanism of action of Yinchen Wuling powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation. BioMed Research International, 2021, 9965906. https://doi.org/10.1155/2021/9965906
  • Zare-Feizabadi, N., Amiri-Tehranizadeh, Z., Sharifi-Rad, A., Mokaberi, P., Nosrati, N., Hashemzadeh, F., Rahimi, H. R., Saberi, M. R., & Chamani, J. (2021). Determining the interaction behavior of calf thymus DNA with anastrozole in the presence of histone H1: Spectroscopies and cell viability of MCF-7 cell line investigations. DNA and Cell Biology, 40(8), 1039–1051. https://doi.org/10.1089/dna.2021.0052
  • Zeng, F. M., Wang, X. N., Shi, H. S., Xie, J. J., Du, Z. P., Liao, L. D., Nie, P. J., Xu, L. Y., & Li, E. M. (2017). Fascin phosphorylation sites combine to regulate esophageal squamous cancer cell behavior. Amino Acids, 49(5), 943–955. https://doi.org/10.1007/s00726-017-2398-1
  • Zhang, Y. G., Niu, J. T., Wu, H. W., Si, X. L., Zhang, S. J., Li, D. H., Bian, T. T., Li, Y. F., & Yan, X. K. (2021). Actin-binding proteins as potential biomarkers for chronic inflammation-induced cancer diagnosis and therapy. Analytical Cellular Pathology (Amsterdam), 2021, 6692811. https://doi.org/10.1155/2021/6692811
  • Zhu, J., Li, Y., Wang, J., Yu, Z., Liu, Y., Tong, Y., & Han, W. (2018). Adaptive steered molecular dynamics combined with protein structure networks revealing the mechanism of Y68I/G109P mutations that enhance the catalytic activity of D-psicose 3-epimerase from Clostridium bolteae. Frontiers in Chemistry, 6, 437. https://doi.org/10.3389/fchem.2018.00437

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.