297
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Design peptide and multi-epitope protein vaccine candidates against monkeypox virus using reverse vaccinology approach: an in-silico study

, , , , , , & ORCID Icon show all
Pages 14398-14418 | Received 10 Oct 2022, Accepted 11 Feb 2023, Published online: 08 May 2023

References

  • Abraham, M., Van Der Spoel, D., Lindahl, E., & Hess, B. (2014). The GROMACS Development Team. GROMACS User Manual Version 5.0.2.
  • Alais, S., Mahieux, R., & Dutartre, H. (2015). Viral source-independent high susceptibility of dendritic cells to human T-cell leukemia virus type 1 infection compared to that of T lymphocytes. Journal of Virology, 89(20), 10580–10590. https://doi.org/10.1128/JVI.01799-15
  • Alakunle, E. F., & Okeke, M. I. (2022). Monkeypox virus: A neglected zoonotic pathogen spreads globally. Nature Reviews Microbiology, 20(9), 507–508. https://doi.org/10.1038/s41579-022-00776-z
  • Almehmadi, M., Allahyani, M., Alsaiari, A. A., Alshammari, M. K., Alharbi, A. S., Hussain, K. H., Alsubaihi, L. I., Kamal, M., Alotaibi, S. S., Alotaibi, A. N., Aldhafeeri, A. A., & Imran, M. (2022). A glance at the development and patent literature of tecovirimat: The first-in-class therapy for emerging monkeypox outbreak. Viruses, 14(9), 1870. https://doi.org/10.3390/v14091870
  • Beaufays, J., Lins, L., Thomas, A., & Brasseur, R. (2012). In silico predictions of 3D structures of linear and cyclic peptides with natural and non‐proteinogenic residues. Journal of Peptide Science, 18(1), 17–24. https://doi.org/10.1002/psc.1410
  • Berman, H. M., Westbrook, J., Feng, Z., Iype, L., Schneider, B., & Zardecki, C. (2003). The nucleic acid database. Methods of Biochemical Analysis, 44, 199–216.
  • Bharti, D. R., Hemrom, A. J., & Lynn, A. M. (2019). GCAC: Galaxy workflow system for predictive model building for virtual screening. BMC Bioinformatics, 19(S13), 199–206. https://doi.org/10.1186/s12859-018-2492-8
  • Brown, K., & Leggat, P. A. (2016). Human monkeypox: Current state of knowledge and implications for the future. Tropical Medicine and Infectious Disease, 1(1), 8. https://doi.org/10.3390/tropicalmed1010008
  • Bui, H.-H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K.-A., Mothé, B. R., Chisari, F. V., Watkins, D. I., & Sette, A. (2005). Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics, 57(5), 304–314. https://doi.org/10.1007/s00251-005-0798-y
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 1–9. https://doi.org/10.1155/2012/842329
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D, Biological Crystallography, 66(Pt 1), 12–21. https://doi.org/10.1107/S0907444909042073
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 40(1), 82–92.
  • DeLano, W. L., & Bromberg, S. (2004). PyMOL user’s guide (p. 629). DeLano Scientific LLC.
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England: 1993), 28(9), 1071–1081. e3. https://doi.org/10.1016/j.str.2020.06.006
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587. https://doi.org/10.1080/14760584.2022.2021882
  • Dey, J., Mahapatra, S. R., Patnaik, S., Lata, S., Kushwaha, G. S., Panda, R. K., Misra, N., & Suar, M. (2022). Molecular characterization and designing of a novel multiepitope vaccine construct against Pseudomonas aeruginosa. International Journal of Peptide Research and Therapeutics, 28(2), 1–19. https://doi.org/10.1007/s10989-021-10356-z
  • Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens, 14(1), 1–20. https://doi.org/10.1186/s13099-022-00495-z
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 1–6. https://doi.org/10.1007/s00894-014-2278-5
  • Doshi, R. H., Alfonso, V. H., Morier, D., Hoff, N. A., Sinai, C., Mulembakani, P., Kisalu, N., Cheng, A., Ashbaugh, H., Gadoth, A., Cowell, B., Okitolonda, E. W., Muyembe-Tamfum, J.-J., & Rimoin, A. W. (2020). Monkeypox rash severity and animal exposures in the Democratic Republic of the Congo. EcoHealth, 17(1), 64–73. https://doi.org/10.1007/s10393-019-01459-7
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Doytchinova, I. A., & Flower, D. R. (2008). Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J, 1(1), 4.
  • Dumont, C., Irenge, L. M., Magazani, E. K., Garin, D., Muyembe, J.-J T., Bentahir, M., & Gala, J.-L. (2014). Simple technique for in field samples collection in the cases of skin rash illness and subsequent PCR detection of orthopoxviruses and varicella zoster virus. PLoS One, 9(5), e96930. https://doi.org/10.1371/journal.pone.0096930
  • Dupuy, L. C., & Schmaljohn, C. S. (2009). DNA vaccines for biodefense. Expert Review of Vaccines, 8(12), 1739–1754. https://doi.org/10.1586/erv.09.132
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Gouklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2021). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure & Dynamics, 39(8), 2857–2872. https://doi.org/10.1080/07391102.2020.1756411
  • Fantini, J., Chahinian, H., & Yahi, N. (2022). A vaccine strategy based on the identification of an annular ganglioside binding motif in monkeypox virus protein E8L. Viruses, 14(11), 2531. https://doi.org/10.3390/v14112531
  • Forbes, N., Baclic, O., Harrison, R., & Brousseau, N., The National Advisory Committee on Immunization (NACI). (2022). Summary of the National Advisory Committee on Immunization (NACI) Rapid Response: Updated interim guidance on Imvamune in the context of ongoing monkeypox outbreaks. Canada Communicable Disease Report, 48(11/12), 580–586. https://doi.org/10.14745/ccdr.v48i1112a11
  • Franceschi, V., Parker, S., Jacca, S., Crump, R. W., Doronin, K., Hembrador, E., Pompilio, D., Tebaldi, G., Estep, R. D., Wong, S. W., Buller, M. R., & Donofrio, G. (2015). BoHV-4-based vector single heterologous antigen delivery protects STAT1 (-/-) mice from monkeypoxvirus lethal challenge. PLoS Neglected Tropical Diseases, 9(6), e0003850. https://doi.org/10.1371/journal.pntd.0003850
  • Friend, U. S., et al. (2009). In silico analysis of envelope Dengue Virus-2 and envelope Dengue Virus-3 protein as the backbone of Dengue Virus tetravalent vaccine by using homology modeling method. OnLine Journal of Biological Sciences, 9(1), 6–16.
  • Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology, 120(1), 97–120.
  • Gasteiger, E., et al. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). Springer Protocols Handbooks. Humana Press.
  • Gong, Q., Wang, C., Chuai, X., & Chiu, S. (2022). Monkeypox virus: A re-emergent threat to humans. Virologica Sinica, 37(4), 477–482. https://doi.org/10.1016/j.virs.2022.07.006
  • Gopalakrishnan, K., et al. (2007). Ramachandran plot on the web (2.0). Protein and Peptide Letters, 14(7), 669–671.
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S., Open Source Drug Discovery Consortium. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Habel, J. R., Nguyen, A. T., Rowntree, L. C., Szeto, C., Mifsud, N. A., Clemens, E. B., Loh, L., Chen, W., Rockman, S., Nelson, J., Davies, J., Miller, A., Tong, S. Y. C., Rossjohn, J., Gras, S., Purcell, A. W., Hensen, L., Kedzierska, K., & Illing, P. T. (2022). HLA-A* 11: 01-restricted CD8+ T cell immunity against influenza A and influenza B viruses in Indigenous and non-Indigenous people. PLoS Pathogens, 18(3), e1010337. https://doi.org/10.1371/journal.ppat.1010337
  • Haider, N., Guitian, J., Simons, D., Asogun, D., Ansumana, R., Honeyborne, I., Velavan, T. P., Ntoumi, F., Valdoleiros, S. R., Petersen, E., Kock, R., & Zumla, A. (2022). Increased outbreaks of monkeypox highlight gaps in actual disease burden in Sub-Saharan Africa and in animal reservoirs. International Journal of Infectious Diseases, 122, 107–111. https://doi.org/10.1016/j.ijid.2022.05.058
  • Hraib, M., Jouni, S., Albitar, M. M., Alaidi, S., & Alshehabi, Z. (2022). The outbreak of monkeypox 2022: An overview. Annals of Medicine & Surgery, 79, 104069. https://doi.org/10.1016/j.amsu.2022.104069
  • Huang, Y., Mu, L., & Wang, W. (2022). Monkeypox: Epidemiology, pathogenesis, treatment and prevention. Signal Transduction and Targeted Therapy, 7(1), 1–22. https://doi.org/10.1038/s41392-022-01215-4
  • Isidro, J., Borges, V., Pinto, M., Sobral, D., Santos, J. D., Nunes, A., Mixão, V., Ferreira, R., Santos, D., Duarte, S., Vieira, L., Borrego, M. J., Núncio, S., de Carvalho, I. L., Pelerito, A., Cordeiro, R., & Gomes, J. P. (2022). Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nature Medicine, 28(10), 2220–2221. https://doi.org/10.1038/s41591-022-02036-2
  • Jahantigh, H. R., Stufano, A., Lovreglio, P., Rezaee, S. A., & Ahmadi, K. (2022). In silico identification of epitope-based vaccine candidates against HTLV-1. Journal of Biomolecular Structure & Dynamics, 40(15), 6737–6754. https://doi.org/10.1080/07391102.2021.1889669
  • Keckler, M. S., Salzer, J. S., Patel, N., Townsend, M. B., Nakazawa, Y. J., Doty, J. B., Gallardo-Romero, N. F., Satheshkumar, P. S., Carroll, D. S., Karem, K. L., & Damon, I. K. (2020). IMVAMUNE® and ACAM2000® provide different protection against disease when administered postexposure in an intranasal monkeypox challenge prairie dog model. Vaccines, 8(3), 396. https://doi.org/10.3390/vaccines8030396
  • Khan, M. N., & Pichichero, M. E. (2014). The host immune dynamics of pneumococcal colonization: Implications for novel vaccine development. Human Vaccines & Immunotherapeutics, 10(12), 3688–3699. https://doi.org/10.4161/21645515.2014.979631
  • Kugelman, J. R., Johnston, S. C., Mulembakani, P. M., Kisalu, N., Lee, M. S., Koroleva, G., McCarthy, S. E., Gestole, M. C., Wolfe, N. D., Fair, J. N., Schneider, B. S., Wright, L. L., Huggins, J., Whitehouse, C. A., Wemakoy, E. O., Muyembe-Tamfum, J. J., Hensley, L. E., Palacios, G. F., & Rimoin, A. W. (2014). Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerging Infectious Diseases, 20(2), 232–239. https://doi.org/10.3201/eid2002.130118
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, D., Wilkins, K., McCollum, A. M., Osadebe, L., Kabamba, J., Nguete, B., Likafi, T., Balilo, M. P., Lushima, R. S., Malekani, J., Damon, I. K., Vickery, M. C. L., Pukuta, E., Nkawa, F., Karhemere, S., Tamfum, J.-J M., Okitolonda, E. W., Li, Y., & Reynolds, M. G. (2017). Evaluation of the GeneXpert for human monkeypox diagnosis. The American Journal of Tropical Medicine and Hygiene, 96(2), 405–410. https://doi.org/10.4269/ajtmh.16-0567
  • Likitlersuang, J., Koh, R., Gong, X., Jovanovic, L., Bolivar-Tellería, I., Myers, M., Zariffa, J., & Márquez-Chin, C. (2018). EEG-controlled functional electrical stimulation therapy with automated grasp selection: A proof-of-concept study. Topics in Spinal Cord Injury Rehabilitation, 24(3), 265–274. https://doi.org/10.1310/sci2403-265
  • Liljeroos, L., Malito, E., Ferlenghi, I., & Bottomley, M. J. (2015). Structural and computational biology in the design of immunogenic vaccine antigens. Journal of Immunology Research, 2015, 1–17. https://doi.org/10.1155/2015/156241
  • Lozano, J. M., & Muller, S. (2023). Monkeypox: Potential vaccine development strategies. Trends in Pharmacological Sciences, 44(1), 15–19. https://doi.org/10.1016/j.tips.2022.10.005
  • Mahapatra, S. R., Dey, J., Raj, T. K., Kumar, V., Ghosh, M., Verma, K. K., Kaur, T., Kesawat, M. S., Misra, N., & Suar, M. (2022). The potential of plant-derived secondary metabolites as novel drug candidate against Klebsiella pneumoniae: Molecular docking and simulation investigation. South African Journal of Botany, 149, 789–797. https://doi.org/10.1016/j.sajb.2022.04.043
  • Manici, S., Sturniolo, T., Imro, M. A., Hammer, J., Sinigaglia, F., Noppen, C., Spagnoli, G., Mazzi, B., Bellone, M., Dellabona, P., & Protti, M. P. (1999). Melanoma cells present a MAGE-3 epitope to CD4+ cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. The Journal of Experimental Medicine, 189(5), 871–876. https://doi.org/10.1084/jem.189.5.871
  • Martínez, J. I., et al. (2022). Monkeypox outbreak predominantly affecting men who have sex with men, Madrid, Spain, 26 April to 16 June 2022. Eurosurveillance, 27(27), 2200471.
  • McInnes, C. J., Wood, A. R., Thomas, K., Sainsbury, A. W., Gurnell, J., Dein, F. J., & Nettleton, P. F. (2006). Genomic characterization of a novel poxvirus contributing to the decline of the red squirrel (Sciurus vulgaris) in the UK. The Journal of General Virology, 87(Pt 8), 2115–2125. https://doi.org/10.1099/vir.0.81966-0
  • Meo, S. A., Al-Masri, A. A., Klonoff, D. C., Alshahrani, A. N., & Al-Khlaiwi, T. (2022). Comparison of Biological, Pharmacological Characteristics, Indications, Contraindications and Adverse Effects of JYNNEOS and ACAM2000 Monkeypox Vaccines. Vaccines, 10(11), 1971. https://doi.org/10.3390/vaccines10111971
  • Meyer, H., Totmenin, A., Gavrilova, E., & Shchelkunov, S. (2005). Variola and camelpox virus-specific sequences are part of a single large open reading frame identified in two German cowpox virus strains. Virus Research, 108(1-2), 39–43. https://doi.org/10.1016/j.virusres.2004.07.011
  • Mobini, S., Chizari, M., Mafakher, L., Rismani, E., & Rismani, E. (2020). Computational design of a novel VLP-based vaccine for hepatitis B virus. Frontiers in Immunology, 11, 2074. https://doi.org/10.3389/fimmu.2020.02074
  • Narang, P. K., Dey, J., Mahapatra, S. R., Ghosh, M., Misra, N., Suar, M., Kumar, V., & Raina, V. (2021). Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South African Journal of Botany, 141, 219–226. https://doi.org/10.1016/j.sajb.2021.04.014
  • Nielsen, M., Lundegaard, C., & Lund, O. (2007). Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics, 8(1), 238. https://doi.org/10.1186/1471-2105-8-238
  • Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S. L., Lamberth, K., Buus, S., Brunak, S., & Lund, O. (2003). Reliable prediction of T‐cell epitopes using neural networks with novel sequence representations. Protein Science, 12(5), 1007–1017. https://doi.org/10.1110/ps.0239403
  • Niwa, T., Ying, B.-W., Saito, K., Jin, W., Takada, S., Ueda, T., & Taguchi, H. (2009). Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4201–4206. https://doi.org/10.1073/pnas.0811922106
  • Ogoina, D., & Yinka-Ogunleye, A. (2022). Sexual history of human monkeypox patients seen at a tertiary hospital in Bayelsa, Nigeria. International Journal of STD & AIDS, 33(10), 928–932. https://doi.org/10.1177/09564624221119335
  • Orviz, E., Negredo, A., Ayerdi, O., Vázquez, A., Muñoz-Gomez, A., Monzón, S., Clavo, P., Zaballos, A., Vera, M., Sánchez, P., Cabello, N., Jiménez, P., Pérez-García, J. A., Varona, S., del Romero, J., Cuesta, I., Delgado-Iribarren, A., Torres, M., Sagastagoitia, I., … Zarza, I. (2022). Monkeypox outbreak in Madrid (Spain): Clinical and virological aspects. Journal of Infection, 85(4), 412–417. https://doi.org/10.1016/j.jinf.2022.07.005
  • Petersen, B. W., Kabamba, J., McCollum, A. M., Lushima, R. S., Wemakoy, E. O., Muyembe Tamfum, J.-J., Nguete, B., Hughes, C. M., Monroe, B. P., & Reynolds, M. G. (2019). Vaccinating against monkeypox in the Democratic Republic of the Congo. Antiviral Research, 162, 171–177. https://doi.org/10.1016/j.antiviral.2018.11.004
  • Petersen, E., Zumla, A., Hui, D. S., Blumberg, L., Valdoleiros, S. R., Amao, L., Ntoumi, F., Asogun, D., Simonsen, L., Haider, N., Traore, T., Kapata, N., Dar, O., Nachega, J., Abbara, A., Al Balushi, A., Kock, R., Maeurer, M., Lee, S. S., … Koopmans, M. (2022). Vaccination for monkeypox prevention in persons with high-risk sexual behaviours to control on-going outbreak of monkeypox virus clade 3. International Journal of Infectious Diseases: IJID, 122, 569–571. https://doi.org/10.1016/j.ijid.2022.06.047
  • Poland, G. A., Ovsyannikova, I. G., & Kennedy, R. B. (2018). Personalized vaccinology: A review. Vaccine, 36(36), 5350–5357. https://doi.org/10.1016/j.vaccine.2017.07.062
  • Ponomarenko, J. V., & Bourne, P. E. (2007). Antibody-protein interactions: Benchmark datasets and prediction tools evaluation. BMC Structural Biology, 7(1), 64. https://doi.org/10.1186/1472-6807-7-64
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 1–8. https://doi.org/10.1186/1471-2105-9-514
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Sah, R., Abdelaal, A., Reda, A., Katamesh, B. E., Manirambona, E., Abdelmonem, H., Mehta, R., Rabaan, A. A., Alhumaid, S., Alfouzan, W. A., Alomar, A. I., Khamis, F., Alofi, F. S., Aljohani, M. H., Alfaraj, A. H., Alfaresi, M., Al-Jishi, J. M., Alsalman, J., Alynbiawi, A., Almogbel, M. S., & Rodriguez-Morales, A. J. (2022). Monkeypox and its Possible Sexual Transmission: Where are we now with its evidence? Pathogens, 11(8), 924. https://doi.org/10.3390/pathogens11080924
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sahoo, P., Dey, J., Mahapatra, S. R., Ghosh, A., Jaiswal, A., Padhi, S., Prabhuswamimath, S. C., Misra, N., & Suar, M. (2022). Nanotechnology and COVID-19 convergence: Toward new planetary health interventions against the pandemic. Omics, 26(9), 473–488. https://doi.org/10.1089/omi.2022.0072
  • Saijo, M., Ami, Y., Suzaki, Y., Nagata, N., Iwata, N., Hasegawa, H., Ogata, M., Fukushi, S., Mizutani, T., Sata, T., Kurata, T., Kurane, I., & Morikawa, S. (2006). LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox. Journal of Virology, 80(11), 5179–5188. https://doi.org/10.1128/JVI.02642-05
  • Shin, W.-H., et al. (2014). Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Design, 2(1), 1–11.
  • Silva, M. S. T., et al. (2022). Ambulatory and hospitalized patients with suspected and confirmed mpox: An observational cohort study from Brazil. The Lancet Regional Health-Americas, 17, 100406.
  • Singh, H., & Raghava, G. (2001). ProPred: Prediction of HLA-DR binding sites. Bioinformatics (Oxford, England), 17(12), 1236–1237. https://doi.org/10.1093/bioinformatics/17.12.1236
  • Singh, R., et al. (2020). Unsupervised manifold alignment for single-cell multi-omics data. Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. https://doi.org/10.1145/3388440.3412410
  • Soleymani, S., Tavassoli, A., & Housaindokht, M. R. (2021). An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches. Computers in Biology and Medicine, 140, 105057. https://doi.org/10.1016/j.compbiomed.2021.105057
  • Townsend, M. B., Gallardo-Romero, N. F., Khmaladze, E., Vora, N. M., Maghlakelidze, G., Geleishvili, M., Carroll, D. S., Emerson, G. L., Reynolds, M. G., & Satheshkumar, P. S. (2017). Retrospective proteomic analysis of serum after Akhmeta virus infection: New suspect case identification and insights into poxvirus humoral immunity. The Journal of Infectious Diseases, 216(12), 1505–1512. https://doi.org/10.1093/infdis/jix534
  • Van Regenmortel, M. H. (2016). Structure-based reverse vaccinology failed in the case of HIV because it disregarded accepted immunological theory. International Journal of Molecular Sciences, 17(9), 1591. https://doi.org/10.3390/ijms17091591
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.