287
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Identification and exploration of quinazoline-1,2,3-triazole inhibitors targeting EGFR in lung cancer

ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 11353-11372 | Received 02 Sep 2022, Accepted 17 Dec 2022, Published online: 28 Apr 2023

References

  • Agrawal, N., Mujwar, S., Goyal, A., & Gupta, J. K. (2022). Phytoestrogens as potential antiandrogenic agents against prostate cancer: An in silico analysis. Letters in Drug Design & Discovery, 19(1), 69–78. https://doi.org/10.2174/1570180818666210813121431
  • Ali, Z., Vildevall, M., Rodriguez, G. V., Tandiono, D., Vamvakaris, I., Evangelou, G., Lolas, G., Syrigos, K. N., Villanueva, A., Wick, M., Omar, S., Erkstam, A., Schueler, J., Fahlgren, A., & Jensen, L. D. (2022). Zebrafish patient-derived xenograft models predict lymph node involvement and treatment outcome in non-small cell lung cancer. Journal of Experimental & Clinical Cancer Research, 41(1), 1–18. https://doi.org/10.1186/s13046-022-02280-x
  • Anil, D. A., Aydin, B. O., Demir, Y., & Turkmenoglu, B. (2022). Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1, 2, 3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. Journal of Molecular Structure, 1257, 132613. https://doi.org/10.1016/j.molstruc.2022.132613
  • Ankolekar, A., van der Heijden, B., Dekker, A., Roumen, C., De Ruysscher, D., Reymen, B., Berlanga, A., Oberije, C., & Fijten, R. (2022). Clinician perspectives on clinical decision support systems in lung cancer: Implications for shared decision‐making. Health Expectations, 25(4), 1342–1351. https://doi.org/10.1111/hex.13457
  • Badithapuram, V., Nukala, S. K., Thirukovela, N. S., Dasari, G., Manchal, R., & Bandari, S. (2022). Design, synthesis, and molecular docking studies of some new quinoxaline derivatives as EGFR targeting agents. Russian Journal of Bioorganic Chemistry, 48(3), 565–575. https://doi.org/10.1134/S1068162022030220
  • Bello, M. (2018). Binding mechanism of kinase inhibitors to EGFR and T790M, L858R and L858R/T790M mutants through structural and energetic analysis. International Journal of Biological Macromolecules, 118(Pt B), 1948–1962. https://doi.org/10.1016/j.ijbiomac.2018.07.042
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572
  • Chebaibi, M., Bousta, D., Gonçalves, R. F. B., Hoummani, H., & Achour, S. (2021). Medicinal plants against coronavirus (SARS-COV-2) in morocco via computational virtual screening approach. https://doi.org/10.21203/rs.3.rs-679827/v1
  • Chen, J., Wang, Y., Luo, X., & Chen, Y. (2022). Recent research progress and outlook in agricultural chemical discovery based on quinazoline scaffold. Pesticide Biochemistry and Physiology, 184, 105122. https://doi.org/10.1016/j.pestbp.2022.105122
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Das, A., Greco, G., Kumar, S., Catanzaro, E., Morigi, R., Locatelli, A., Schols, D., Alici, H., Tahtaci, H., Ravindran, F., Fimognari, C., & Karki, S. S. (2022). Synthesis, in vitro cytotoxicity, molecular docking and ADME study of some indolin-2-one linked 1, 2, 3-triazole derivatives. Computational Biology and Chemistry, 97, 107641. https://doi.org/10.1016/j.compbiolchem.2022.107641
  • Das, R., Mehta, D. K., & Dhanawat, M. (2021). Bestowal of quinazoline Scaffold in anticancer drug discovery. Anti-Cancer Agents in Medicinal Chemistry, 21(11), 1350–1368. https://doi.org/10.2174/1871520620666200627205321
  • Deswal, Y., Asija, S., Kumar, D., Jindal, D. K., Chandan, G., Panwar, V., Saroya, S., & Kumar, N. (2022). Transition metal complexes of triazole-based bioactive ligands: Synthesis, spectral characterization, antimicrobial, anticancer and molecular docking studies. Research on Chemical Intermediates, 48(2), 703–729. https://doi.org/10.1007/s11164-021-04621-5
  • Dhuguru, J., & Ghoneim, O. A. (2022). Quinazoline based HDAC dual inhibitors as potential anti-cancer agents. Molecules, 27(7), 2294. https://doi.org/10.3390/molecules27072294
  • Duhan, M., Kumar, P., Sindhu, J., Singh, R., Devi, M., Kumar, A., Kumar, R., & Lal, S. (2021). Exploring biological efficacy of novel benzothiazole linked 2, 5-disubstituted-1, 3, 4-oxadiazole hybrids as efficient α-amylase inhibitors: Synthesis, characterization, inhibition, molecular docking, molecular dynamics and Monte Carlo based QSAR studies. Computers in Biology and Medicine, 138, 104876. https://doi.org/10.1016/j.compbiomed.2021.104876
  • Eltayeb, K., La Monica, S., Tiseo, M., Alfieri, R., & Fumarola, C. (2022). Reprogramming of lipid metabolism in lung cancer: An overview with focus on EGFR-Mutated non-small cell lung cancer. Cells, 11(3), 413. https://doi.org/10.3390/cells11030413
  • El-Zahabi, M. (2021). Review on the significance of quinazoline derivatives as broad spectrum anti-cancer agents. Al-Azhar Journal of Pharmaceutical Sciences, 64(2), 21–40. https://doi.org/10.21608/ajps.2021.187748
  • Gariganti, N., Loke, S. K., Pagadala, E., Chinta, P., Poola, B., Chetti, P., Bansal, A., Ramachandran, B., Srinivasadesikan, V., & Kottalanka, R. K. (2023). Design, synthesis, anticancer activity of new amide derivatives derived from 1, 2, 3-triazole-benzofuran hybrids: An insights from molecular docking, molecular dynamics simulation and DFT studies. Journal of Molecular Structure, 1273, 134250. https://doi.org/10.1016/j.molstruc.2022.134250
  • Ghandour, F., Squassina, A., Karaky, R., Diab-Assaf, M., Fadda, P., & Pisanu, C. (2021). Presenting psychiatric and neurological symptoms and signs of brain tumors before diagnosis: A systematic review. Brain Sciences, 11(3), 301. https://doi.org/10.3390/brainsci11030301
  • Gu, Y., Li, Y., Zhao, S., Jin, M., Lu, J., & Jiang, X. (2022). Real-world data of EGFR mutation testing in chinese non-small cell carcinoma: Low tumor cell number and tumor cellularity can be accepted. Pathology - Research and Practice, 236, 153965. https://doi.org/10.1016/j.prp.2022.153965
  • Haider, K., Das, S., Joseph, A., & Yar, M. S. (2022). An appraisal of anticancer activity with structure–activity relationship of quinazoline and quinazolinone analogues through EGFR and VEGFR inhibition: A review. Drug Development Research, 83(4), 859–890. https://doi.org/10.1002/ddr.21925
  • Haque, A., Baig, G. A., Alshawli, A. S., Sait, K. H. W., Hafeez, B. B., Tripathi, M. K., Alghamdi, B. S., Mohammed Ali, H. S. H., & Rasool, M. (2022). Interaction analysis of MRP1 with anticancer drugs used in ovarian cancer: In silico approach. Life, 12(3), 383. https://doi.org/10.3390/life12030383
  • Hassanzadeh, P., & Arbabi, E. (2022). Presenting a bioactive nanotherapeutic agent for colon cancer treatment. European Journal of Pharmacology, 927, 175084. https://doi.org/10.1016/j.ejphar.2022.175084
  • He, S., Dong, D., Lin, J., Wu, B., Nie, X., & Cai, G. (2022). Overexpression of TRAF4 promotes lung cancer growth and EGFR‐dependent phosphorylation of ERK5. FEBS Open Bio. 12(10), 1747–1760. https://doi.org/10.1002/2211-5463.13458
  • Ihmaid, S. K., Aljuhani, A., Alsehli, M., Rezki, N., Alawi, A., Aldhafiri, A. J., Salama, S. A., Ahmed, H. E. A., & Aouad, M. R. (2022). Discovery of triaromatic flexible agents bearing 1, 2, 3-Triazole with selective and potent anti-breast cancer activity and CDK9 inhibition supported by molecular dynamics. Journal of Molecular Structure, 1249, 131568. https://doi.org/10.1016/j.molstruc.2021.131568
  • Jawad, B., Adhikari, P., Podgornik, R., & Ching, W.-Y. (2021). Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: Combination of molecular dynamics simulation and density functional calculation. Journal of Chemical Information and Modeling, 61(9), 4425–4441. https://doi.org/10.1021/acs.jcim.1c00560
  • Jumbo, L. O. V., Corrêa, M. J. M., Gomes, J. M., Armijos, M. J. G., Valarezo, E., Mantilla-Afanador, J. G., Machado, F. P., Rocha, L., Aguiar, R. W. S., & Oliveira, E. E. (2022). Potential of Bursera graveolens essential oil for controlling bean weevil infestations: Toxicity, repellence, and action targets. Industrial Crops and Products, 178, 114611. https://doi.org/10.1016/j.indcrop.2022.114611
  • Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E., & Dow, L. E. (2022). CRISPR in cancer biology and therapy. Nature Reviews. Cancer, 22(5), 259–279. https://doi.org/10.1038/s41568-022-00441-w
  • Kazemi, S. S., Keivanloo, A., Nasr‐Isfahani, H., & Amin, A. H. (2018). Synthesis and antibacterial evaluation of 1, 2, 3‐triazole‐based quinazolines using click chemistry in the presence of salophen Schiff base ligand. Journal of Heterocyclic Chemistry, 55(7), 1651–1657. https://doi.org/10.1002/jhet.3200
  • Kiriwan, D., Seetaha, S., Jiwacharoenchai, N., Tabtimmai, L., Sousa, S. F., Songtawee, N., & Choowongkomon, K. (2022). Identification of tripeptides against tyrosine kinase domain of EGFR for lung cancer cell inhibition by in silico and in vitro studies. Chemical Biology & Drug Design, 99(3), 456–469. https://doi.org/10.1111/cbdd.14010
  • Kumar, B. K., Faheem, N., Sekhar, K. V. G. C., Ojha, R., Prajapati, V. K., Pai, A., & Murugesan, S. (2022). Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure & Dynamics, 40(3), 1363–1386. https://doi.org/10.1080/07391102.2020.1824814
  • Li, D.-D., Wu, T.-T., Yu, P., Wang, Z.-Z., Xiao, W., Jiang, Y., & Zhao, L.-G. (2020). Molecular dynamics analysis of binding sites of epidermal growth factor receptor kinase inhibitors. ACS Omega, 5(26), 16307–16314. https://doi.org/10.1021/acsomega.0c02183
  • Li, N., Tan, F., Chen, W., Dai, M., Wang, F., Shen, S., Tang, W., Li, J., Yu, Y., Cao, W., Xu, Y., Qin, C., Zhao, L., Zhu, M., Guo, L., Wu, Z., Yang, Z., Zheng, Y., Chen, H., … He, J., National Lung Cancer Screening Programme Group. (2022). One-off low-dose CT for lung cancer screening in China: A multicentre, population-based, prospective cohort study. The Lancet. Respiratory Medicine, 10(4), 378–391. https://doi.org/10.1016/S2213-2600(21)00560-9
  • Mandal, S. K., Kumar, B. K., Sharma, P. K., Murugesan, S., & Deepa, P. R. (2022). In silico and in vitro analysis of PPAR–α/γ dual agonists: Comparative evaluation of potential phytochemicals with anti-obesity drug orlistat. Computers in Biology and Medicine, 147, 105796. https://doi.org/10.1016/j.compbiomed.2022.105796
  • Meng, Y., Pond, M. P., & Roux, B. (2017). Tyrosine kinase activation and conformational flexibility: Lessons from Src-family tyrosine kinases. Accounts of Chemical Research, 50(5), 1193–1201. https://doi.org/10.1021/acs.accounts.7b00012
  • Nagarajan, S. R., Butler, L. M., & Hoy, A. J. (2021). The diversity and breadth of cancer cell fatty acid metabolism. Cancer & Metabolism, 9(1), 2. https://doi.org/10.1186/s40170-020-00237-2
  • Nair, S., Bonner, J. A., & Bredel, M. (2022). EGFR mutations in head and neck squamous cell carcinoma. International Journal of Molecular Sciences, 23(7), 3818. https://doi.org/10.3390/ijms23073818
  • Nguyen, P. T. V., Huynh, H. A., Truong, D. V., Tran, T.-D., & Vo, C.-V T. (2020). Exploring aurone derivatives as potential human pancreatic lipase inhibitors through molecular docking and molecular dynamics simulations. Molecules, 25(20), 4657. https://doi.org/10.3390/molecules25204657
  • Pandi, S., Kulanthaivel, L., Subbaraj, G. K., Rajaram, S., & Subramanian, S. (2022). Screening of potential breast cancer inhibitors through molecular docking and molecular dynamics simulation. BioMed Research International, 2022, 3338549. https://doi.org/10.1155/2022/3338549
  • Patnaik, S. K., Chandrasekar, M. J. N., Nagarjuna, P., Ramamurthi, D., & Swaroop, A. K. (2022). Targeting of ErbB1, ErbB2, and their dual targeting using small molecules and natural peptides: Blocking EGFR cell signaling pathways in cancer: A mini review. Mini-Reviews in Medicinal Chemistry, 22(22), 2831–2846. https://doi.org/10.2174/1389557522666220512152448
  • Peng, J., Xiao, L., Zou, D., & Han, L. (2022). A somatic mutation signature predicts the best overall response to anti-programmed cell death protein-1 treatment in epidermal growth factor receptor/anaplastic lymphoma kinase-negative non-squamous non-small cell lung cancer. Frontiers in Medicine, 9, 808378. https://doi.org/10.3389/fmed.2022.808378
  • Podolsky, K. A., Masubuchi, T., Debelouchina, G. T., Hui, E., & Devaraj, N. K. (2022). In situ assembly of transmembrane proteins from expressed and synthetic components in giant unilamellar vesicles. ACS Chemical Biology, 17(5), 1015–1021. https://doi.org/10.1021/acschembio.2c00013
  • Raza, S., Rajak, S., Tewari, A., Gupta, P., Chattopadhyay, N., Sinha, R. A., & Chakravarti, B. (2022). Multifaceted role of chemokines in solid tumors: From biology to therapy. Seminars in Cancer Biology, 86, 1105–1121. https://doi.org/10.1016/j.semcancer.2021.12.011
  • Robertson, A. G., & Rendina, L. M. (2021). Gadolinium theranostics for the diagnosis and treatment of cancer. Chemical Society Reviews, 50(7), 4231–4244. https://doi.org/10.1039/D0CS01075H
  • Safavi, M., Ashtari, A., Khalili, F., Mirfazli, S. S., Saeedi, M., Ardestani, S. K., Rashidi Ranjbar, P., Barazandeh Tehrani, M., Larijani, B., & Mahdavi, M. (2018). Novel quinazolin‐4 (3H)‐one linked to 1, 2, 3‐triazoles: Synthesis and anticancer activity. Chemical Biology & Drug Design, 92(1), 1373–1381. https://doi.org/10.1111/cbdd.13203
  • Saldaña-Rivera, L., Bello, M., & Méndez-Luna, D. (2019). Structural insight into the binding mechanism of ATP to EGFR and L858R, and T790M and L858R/T790 mutants. Journal of Biomolecular Structure & Dynamics, 37(17), 4671–4684. https://doi.org/10.1080/07391102.2018.1558112
  • Shakil, S. (2021). Molecular interaction of inhibitors with human brain butyrylcholinesterase. EXCLI Journal, 20, 1597. https://doi.org/10.17179/excli2021-4418
  • Shia, W.-C., & Chen, D.-R. (2021). Classification of malignant tumors in breast ultrasound using a pretrained deep residual network model and support vector machine. Computerized Medical Imaging and Graphics, 87, 101829. https://doi.org/10.1016/j.compmedimag.2020.101829
  • Syarafina, Z. Y. I., Safithri, M., Bintang, M., & Kurniasih, R. (2022). In silico screening of cinnamon (Cinnamomum burmannii) bioactive compounds as acetylcholinesterase inhibitors. Jurnal Kimia Sains Dan Aplikasi, 25(3), 97–107. https://doi.org/10.14710/jksa.25.3.97-107
  • Tanveer, F., Anwar, M. F., Siraj, B., & Zarina, S. (2021). Evaluation of anti‐EGFR potential of quinazoline derivatives using molecular docking: An in silico approach. Biotechnology and Applied Biochemistry, 69(3), 1226–1237. https://doi.org/10.1002/bab.2199
  • Tsui, D. C. C., Camidge, D. R., & Rusthoven, C. G. (2022). Managing central nervous system spread of lung cancer: The state of the art. Journal of Clinical Oncology, 40(6), 642–660. https://doi.org/10.1200/JCO.21.01715
  • Türkmenoğlu, B. (2022). Investigation of novel compounds via in silico approaches of EGFR inhibitors as anticancer agents. Journal of the Indian Chemical Society, 99(8), 100601. https://doi.org/10.1016/j.jics.2022.100601
  • Van der Weijst, L., Aguado-Barrera, M. E., Azria, D., Berkovic, P., Boisselier, P., Briers, E., Bultijnck, R., Calvo-Crespo, P., Chang-Claude, J., Choudhury, A., Defraene, G., Demontois, S., Dunning, A. M., Elliott, R. M., Ennis, D., Faivre-Finn, C., Franceschini, M., Gutiérrez-Enríquez, S., Herskind, C., … Lievens, Y., REQUITE Consortium. (2022). Overview of health-related quality of life and toxicity of non-small cell lung cancer patients receiving curative-intent radiotherapy in a real-life setting (the REQUITE study). Lung Cancer (Amsterdam, Netherlands), 166, 228–241. https://doi.org/10.1016/j.lungcan.2022.03.010
  • Vijayalakshmi, V., Nivetha, N., & Thangamani, A. (2022). Synthesis, molecular docking, anti-cancer activity, and in-silico ADME analysis of novel spiroacenaphthylene pyrrolizidine derivatives. Journal of Molecular Structure, 1265, 133465. https://doi.org/10.1016/j.molstruc.2022.133465
  • Wu, J., Jiang, J., Chen, B., Wang, K., Tang, Y., & Liang, X. (2021). Plasticity of cancer cell invasion: Patterns and mechanisms. Translational Oncology, 14(1), 100899. https://doi.org/10.1016/j.tranon.2020.100899
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yan, D., Huelse, J. M., Kireev, D., Tan, Z., Chen, L., Goyal, S., Wang, X., Frye, S. V., Behera, M., Schneider, F., Ramalingam, S. S., Owonikoko, T., Earp, H. S., DeRyckere, D., & Graham, D. K. (2022). MERTK activation drives osimertinib resistance in EGFR-mutant non-small cell lung cancer. Journal of Clinical Investigation, 132(15), e150517. https://doi.org/10.1172/JCI150517

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.