445
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational investigation of Moringa oleifera phytochemicals targeting EGFR: molecular docking, molecular dynamics simulation and density functional theory studies

ORCID Icon, , &
Pages 1901-1923 | Received 12 Dec 2022, Accepted 08 Apr 2023, Published online: 08 May 2023

References

  • Abdellattif, M. H., Elkamhawy, A., Hagar, M., Hadda, T., Ben Shehab, W. S., Mansy, W., Belal, A., Arief, M. M. H., & Hussien, M. A. (2022). Novel saccharin analogs as promising antibacterial and anticancer agents: Synthesis, DFT, POM analysis, molecular docking, molecular dynamic simulations, and cell-based assay. Frontiers in Pharmacology, 13, 958379. https://doi.org/10.3389/fphar.2022.958379
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Abu El-Reash, G. M., El-Gammal, O. A., & Radwan, A. H. (2014). Molecular structure and biological studies on Cr(III), Mn(II) and Fe(III) complexes of heterocyclic carbohydrazone ligand. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 121, 259–267. https://doi.org/10.1016/j.saa.2013.10.048
  • Abu El-Reash, G. M., El-Gammal, O. A., Ghazy, S. E., & Radwan, A. H. (2013). Characterization and biological studies on Co(II), Ni(II) and Cu(II) complexes of carbohydrazones ending by pyridyl ring. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 104, 26–34. https://doi.org/10.1016/j.saa.2012.11.008
  • Afroz, M., Zihad, S. M. N. K., Uddin, S. J., Rouf, R., Rahman, M. S., Islam, M. T., Khan, I. N., Ali, E. S., Aziz, S., Shilpi, J. A., Nahar, L., & Sarker, S. D. (2019). A systematic review on antioxidant and antiinflammatory activity of Sesame (Sesamum indicum L.) oil and further confirmation of antiinflammatory activity by chemical profiling and molecular docking. Phytotherapy Research: PTR, 33(10), 2585–2608. https://doi.org/10.1002/PTR.6428
  • Ahmad Mir, S., Meher, R. K., Baitharu, I., & Nayak, B. (2022). Molecular dynamic simulation, free binding energy calculation of Thiazolo-[2,3-b]quinazolinone derivatives against EGFR-TKD and their anticancer activity. Results in Chemistry, 4, 100418. https://doi.org/10.1016/j.rechem.2022.100418
  • Ahmad Mir, S., Paramita Mohanta, P., Kumar Meher, R., Baitharu, I., Kumar Raval, M., Kumar Behera, A., & Nayak, B. (2022). Structural insights into conformational stability and binding of thiazolo-[2,3-b] quinazolinone derivatives with EGFR-TKD and in-vitro study. Saudi Journal of Biological Sciences, 29(12), 103478. https://doi.org/10.1016/j.sjbs.2022.103478
  • Akhouri, V., Kumari, M., & Kumar, A. (2020). Therapeutic effect of Aegle marmelos fruit extract against DMBA induced breast cancer in rats. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-72935-2
  • Alam, M. M., Nazreen, S., Almalki, A. S. A., Elhenawy, A. A., Alsenani, N. I., Elbehairi, S. E. I., Malebari, A. M., Alfaifi, M. Y., Alsharif, M. A., & Alfaifi, S. Y. M. (2021). Naproxen based 1,3,4-oxadiazole derivatives as EGFR inhibitors: Design, synthesis, anticancer, and computational studies. Pharmaceuticals, 14(9), 870. https://doi.org/10.3390/ph14090870
  • Alnoman, R. B., Parveen, S., Khan, A., Knight, J. G., & Hagar, M. (2022). New quinoline-based BODIPYs as EGFR/VEGFR-2 inhibitors: Molecular docking, DFT and in vitro cytotoxicity on HeLa cells. Journal of Molecular Structure, 1247, 131312. https://doi.org/10.1016/j.molstruc.2021.131312
  • AlShatnawi, M. N., Shawashreh, R. A., Sunoqrot, M. A., & Yaghi, A. R. (2022). A systematic review of epidermal growth factor receptor tyrosine kinase inhibitor-induced heart failure and its management. The Egyptian Journal of Internal Medicine, 34(1), 1–17. https://doi.org/10.1186/s43162-022-00176-y
  • Anand, K., Ramesh, M., Singh, T., Balakumar, C., Chithravel, V., Prasher, P., Katari, N. K., Gupta, G., Singh, S. K., Chellappan, D. K., Dua, K., Chavda, V., Laishevtcev, A., Shahbaaz, M., Abdellattif, M. H., Saravanan, M., & Chuturgoon, A. A. (2022). One-step synthesis of picolinohydrazides from fusaric acid: DFT, structural characterization and molecular inhibitory studies on metastatic tumor-derived exosomal and non-exosomal proteins. Journal of Molecular Structure, 1255, 132442. https://doi.org/10.1016/j.molstruc.2022.132442
  • Baba, Y. F., Gökce, H., Rodi, Y. K., Hayani, S., Chahdi, F. O., Boukir, A., Jasinski, J. P., Kaur, M., Hökelek, T., Sebbar, N. K., & Essassi, E. M. (2020). Syntheses of novel 2-oxo-1,2-dihydroquinoline derivatives: Molecular and crystal structures, spectroscopic characterizations, Hirshfeld surface analyses, molecular docking studies and density functional theory calculations. Journal of Molecular Structure, 1217, 128461. https://doi.org/10.1016/j.molstruc.2020.128461
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/NAR/GKY318
  • Berkovich, L., Earon, G., Ron, I., Rimmon, A., Vexler, A., & Lev-Ari, S. (2013). Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complementary and Alternative Medicine, 13, 212. https://doi.org/10.1186/1472-6882-13-212
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhatia, P., Sharma, V., Alam, O., Manaithiya, A., Alam, P., Alam, M. T., Imran., & M., Kahksha. (2020). Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). European Journal of Medicinal Chemistry, 204, 112640. https://doi.org/10.1016/J.EJMECH.2020.112640
  • Biovia, D. S. (2020). BIOVIA Materials Studio (No. 2020). Dassault Systèmes.
  • Biovia, D. S. (2021). BIOVIA Discovery Studio (No. 2021). Dassault Systèmes.
  • Blakely, C. M., Pazarentzos, E., Olivas, V., Asthana, S., Yan, J. J., Tan, I., Hrustanovic, G., Chan, E., Lin, L., Neel, D. S., Newton, W., Bobb, K. L., Fouts, T. R., Meshulam, J., Gubens, M. A., Jablons, D. M., Johnson, J. R., Bandyopadhyay, S., Krogan, N. J., & Bivona, T. G. (2015). NF-κB-Activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Reports, 11(1), 98–110. https://doi.org/10.1016/j.celrep.2015.03.012
  • Bornot, A., Etchebest, C., & De Brevern, A. G. (2011). Predicting protein flexibility through the prediction of local structures. Proteins, 79(3), 839–852. https://doi.org/10.1002/PROT.22922
  • Capdevila, J., Elez, E., Macarulla, T., Ramos, F. J., Ruiz-Echarri, M., & Tabernero, J. (2009). Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treatment Reviews, 35(4), 354–363. https://doi.org/10.1016/j.ctrv.2009.02.001
  • Caponnetto, S., Cantale, O., Friedlaender, A., Gomes, F., Daryanani, S., Gelibter, A., Cortellini, A., Giuffrida, D., Addeo, A., & Banna, G. L. (2021). A comparison between first-, second- and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small-cell lung cancer and brain metastases. Journal of Molecular Pathology, 2(1), 1–10. https://doi.org/10.3390/jmp2010001
  • Choi, J. M., Lee, E. O., Lee, H. J., Kim, K. H., Ahn, K. S., Shim, B. S., Kim, N. I., Song, M. C., Baek, N. I., & Kim, S. H. (2007). Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities. Phytotherapy Research: PTR, 21(10), 954–959. https://doi.org/10.1002/PTR.2189
  • Cui, W., Aouidate, A., Wang, S., Yu, Q., Li, Y., & Yuan, S. (2020). Discovering anti-cancer drugs via computational methods. Frontiers in Pharmacology, 11, 733. https://doi.org/10.3389/fphar.2020.00733
  • Curreli, F., Kwon, Y., Do, Belov, D. S., Ramesh, R. R., Kurkin, A. V., Altieri, A., Kwong, P. D., & Debnath, A. K. (2017). Synthesis, antiviral potency, in vitro ADMET, and X-ray structure of potent CD4 mimics as entry inhibitors that target the Phe43 cavity of HIV-1 gp120. Journal of Medicinal Chemistry, 60(7), 3124–3153. https://doi.org/10.1021/ACS.JMEDCHEM.7B00179/SUPPL_FILE/JM7B00179_SI_002.CSV
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dar, N. J., Satti, N. K., Dutt, P., Hamid, A., & Ahmad, M. (2018). Attenuation of glutamate-induced excitotoxicity by withanolide-A in neuron-like cells: Role for PI3K/Akt/MAPK signaling pathway. Molecular Neurobiology, 55(4), 2725–2739. https://doi.org/10.1007/S12035-017-0515-5/METRICS
  • Dessai, P. G., Dessai, S. P., Dabholkar, R., Pednekar, P., Naik, S., Mamledesai, S., Gopal, M., Pavadai, P., Kumar, B. K., Murugesan, S., Chandavarkar, S., Theivendren, P., & Selvaraj, K. (2022). Design, synthesis, graph theoretical analysis and molecular modelling studies of novel substituted quinoline analogues as promising anti-breast cancer agents. Molecular Diversity, 1, 1–20. https://doi.org/10.1007/s11030-022-10512-7
  • Ding, P. N., Lord, S. J., Gebski, V., Links, M., Bray, V., Gralla, R. J., Yang, J. C. H., & Lee, C. K. (2017). Risk of treatment-related toxicities from EGFR tyrosine kinase inhibitors: A meta-analysis of clinical trials of gefitinib, erlotinib, and afatinib in advanced EGFR-mutated non–small cell lung cancer. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 12(4), 633–643. https://doi.org/10.1016/j.jtho.2016.11.2236
  • Dongre, U., Meshram, T., Dighe, S., Narnawre, K., Mehere, B., & Somkuwar, S. R. (2020). Screening of selected ethno-medicinal plants for anti-cancer activity. Advances in Zoology and Botany, 8(5), 447–452. https://doi.org/10.13189/azb.2020.080509
  • Dubey, S., Kallubai, M., & Subramanyam, R. (2021). Improving the inhibition of β-amyloid aggregation by withanolide and withanoside derivatives. International Journal of Biological Macromolecules, 173, 56–65. https://doi.org/10.1016/J.IJBIOMAC.2021.01.094
  • Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15(9), 1093–1108. https://doi.org/10.1007/s00894-009-0454-9
  • El-Gammal, O. A., Abu El-Reash, G. M., Ghazy, S. E., & Radwan, A. H. (2012). Synthesis, characterization, molecular modeling and antioxidant activity of (1E,5E)-1,5-bis(1-(pyridin-2-yl)ethylidene)carbonohydrazide (H2APC) and its zinc(II), cadmium(II) and mercury(II) complexes. Journal of Molecular Structure, 1020, 6–15. https://doi.org/10.1016/j.molstruc.2012.04.029
  • Elkaeed, E. B., Yousef, R. G., Elkady, H., Alsfouk, A. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M., & Eissa, I. H. (2022). New anticancer theobromine derivative targeting EGFRWT and EGFRT790M: Design, semi-synthesis, in silico, and in vitro anticancer studies. Molecules, 27(18), 5859. https://doi.org/10.3390/molecules27185859
  • El-Wahab, H. A. A. A., Ali, A. M., Abdel-Rahman, H. M., & Qayed, W. S. (2022). Synthesis, biological evaluation, and molecular modeling studies of acetophenones-tethered 1,2,4-triazoles and their oximes as epidermal growth factor receptor inhibitors. Chemical Biology & Drug Design, 100(6), 981–993. https://doi.org/10.1111/CBDD.13982
  • Farooq, B., Koul, B., Mahant, D., & Yadav, D. (2021). Phytochemical analyses, antioxidant and anticancer activities of ethanolic leaf extracts of moringa oleifera lam varieties. Plants, 10(11), 2348. https://doi.org/10.3390/plants10112348
  • Fukushima, A., Nakamura, M., Suzuki, H., Yamazaki, M., Knoch, E., Mori, T., Umemoto, N., Morita, M., Hirai, G., Sodeoka, M., & Saito, K. (2016). Comparative characterization of the leaf tissue of physalis alkekengi and physalis peruviana using RNA-seq and metabolite profiling. Frontiers in Plant Science, 7, 1883. https://doi.org/10.3389/FPLS.2016.01883/BIBTEX
  • George, B. P., Chandran, R., & Abrahamse, H. (2021). Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants, 10(9), 1455. https://doi.org/10.3390/antiox10091455
  • Ghasemi, F., Zomorodipour, A., Karkhane, A. A., & Khorramizadeh, M. R. (2016). In silico designing of hyper-glycosylated analogs for the human coagulation factor IX. Journal of Molecular Graphics & Modelling, 68, 39–47. https://doi.org/10.1016/J.JMGM.2016.05.011
  • Govindarajan, M., Karabacak, M., Periandy, S., & Tanuja, D. (2012). Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of organic 2,4,5-trichloroaniline. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 97, 231–245. https://doi.org/10.1016/j.saa.2012.06.014
  • Greenhalgh, J., Boland, A., Bates, V., Vecchio, F., Dundar, Y., Chaplin, M., & Green, J. A. (2021). First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. The Cochrane Database of Systematic Reviews, 3(3), CD010383. https://doi.org/10.1002/14651858.CD010383.pub3
  • Gunasekaran, S., Arun Balaji, R., Kumaresan, S., Anand, G., & Srinivasan, S. (2008). Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-methoxytryptamine. Canadian Journal of Analytical Sciences and Spectroscopy, 53(4), 149–162.
  • HMDB. (2022a). Human metabolome database: Showing metabocard for delta7-Avenasterol (HMDB0006851). https://hmdb.ca/metabolites/HMDB0006851
  • HMDB. (2022b). Human metabolome database: Showing metabocard for 24-Methylenecholesterol (HMDB0006849). https://hmdb.ca/metabolites/HMDB0006849
  • Iury, H., Magalhães, F., Veras, M. L., Torres, R., Negreiros, A. P., Alves, N., Deusdênia, O., Pessoa, L., Silveira, R., Veras Costa-Lotufo, L., Odorico De Moraes, M., & Pessoa, C. (2006). In-vitro and in-vivo antitumour activity of physalins B and D from Physalis angulata. The Journal of Pharmacy and Pharmacology, 58(2), 235–241. https://doi.org/10.1211/JPP.58.2.0011
  • Jász, Á., Rák, Á., Ladjánszki, I., & Cserey, G. (2019). Optimized GPU implementation of Merck molecular force field and universal force field. Journal of Molecular Structure, 1188, 227–233. https://doi.org/10.1016/j.molstruc.2019.04.007
  • Jedrzejas, M. J., Singh, S., Brouillette, W. J., Air, G. M., & Luo, M. (1995). A strategy for theoretical binding constant, Ki, calculations for neuraminidase aromatic inhibitors designed on the basis of the active site structure of influenza virus neuraminidase. Proteins, 23(2), 264–277. https://doi.org/10.1002/prot.340230215
  • Jethwa, M., Gangopadhyay, A., & Saha, A. (2021). Search for potentially biased epidermal growth factor receptor (EGFR) inhibitors through pharmacophore modelling, molecular docking, and molecular dynamics (MD) simulation approaches. Journal of Biomolecular Structure and Dynamics, 41(5), 1681–1689. https://doi.org/10.1080/07391102.2021.2023644
  • Jia, Y., Yun, C.-H., Park, E., Ercan, D., Manuia, M., Juarez, J., Xu, C., Rhee, K., Chen, T., Zhang, H., Palakurthi, S., Jang, J., Lelais, G., DiDonato, M., Bursulaya, B., Michellys, P.-Y., Epple, R., Marsilje, T. H., McNeill, M., … Eck, M. J. (2016). Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 534(7605), 129–132. https://doi.org/10.1038/nature17960
  • Kabir, M. L., Backler, F., Clayton, A. H. A., & Wang, F. (2020). Deducing the conformational properties of a tyrosine kinase inhibitor in solution by optical spectroscopy and computational chemistry. Frontiers in Chemistry, 8, 596. https://doi.org/10.3389/fchem.2020.00596
  • Kaplan, W., & Littlejohn, T. G. (2001). Swiss-PDB viewer (deep view). Briefings in Bioinformatics, 2(2), 195–197. https://doi.org/10.1093/BIB/2.2.195
  • Karachaliou, N., Fernandez-Bruno, M., Bracht, J. W. P., & Rosell, R. (2019). EGFR first- and second-generation TKIs—there is still place for them in EGFR -mutant NSCLC patients. Translational Cancer Research, 8(Suppl 1), S23–S47. https://doi.org/10.21037/TCR.2018.10.06
  • Karnik, K. S., Sarkate, A. P., Lokwani, D. K., Narula, I. S., Burra, P. V. L. S., & Wakte, P. S. (2021). Development of triple mutant T790M/C797S allosteric EGFR inhibitors: A computational approach. Journal of Biomolecular Structure & Dynamics, 39(15), 5376–5398. https://doi.org/10.1080/07391102.2020.1786460
  • Karnik, K. S., Sarkate, A. P., Lokwani, D. K., Tiwari, S. V., Azad, R., & Wakte, P. S. (2022). Molecular dynamic simulations based discovery and development of thiazolidin-4-one derivatives as EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC). Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2022.2071339
  • Karnik, K. S., Sarkate, A. P., Tiwari, S. V., Azad, R., & Wakte, P. S. (2021). Free energy perturbation guided Synthesis with Biological Evaluation of Substituted Quinoline derivatives as small molecule L858R/T790M/C797S mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC). Bioorganic Chemistry, 115, 105226. https://doi.org/10.1016/J.BIOORG.2021.105226
  • Karnik, K. S., Sarkate, A. P., Tiwari, S. V., Azad, R., Burra, P. V. L. S., & Wakte, P. S. (2021). Computational and synthetic approach with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC). Bioorganic Chemistry, 107, 104612. https://doi.org/10.1016/J.BIOORG.2020.104612
  • Kavitha, R., Karunagaran, S., Chandrabose, S. S., Lee, K. W., & Meganathan, C. (2015). Pharmacophore modeling, virtual screening, molecular docking studies and density functional theory approaches to identify novel ketohexokinase (KHK) inhibitors. Bio Systems, 138, 39–52. https://doi.org/10.1016/J.BIOSYSTEMS.2015.10.005
  • Khalafalla, M. M., Abdellatef, E., Dafalla, H. M., Nassrallah, A., A., Aboul-Enein, K. M., Lightfoot, D. A., El-Deeb, F. E., & El-Shemy, H. A. (2010). Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. African Journal of Biotechnology, 9(49), 8467–8471.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Kosar, B., & Albayrak, C. (2011). Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 78(1), 160–167. https://doi.org/10.1016/j.saa.2010.09.016
  • Krishnamoorthy, P. K. P., Balaraman, A. D., Priyadharshini, A., Shanmugam, D. A. S., Muthukumaran, S., Kesavamurthy, A., & Revanasiddappa, P. D. (2023). Molecular docking and simulation binding analysis of boeravinone B with caspase-3 and EGFR of hepatocellular carcinoma. Letters in Drug Design & Discovery, 20(2), 238–244. https://doi.org/10.2174/1570180819666220805163725
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/CI500020M/SUPPL_FILE/CI500020M_SI_001.PDF
  • Kuzmanic, A., & Zagrovic, B. (2010). Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophysical Journal, 98(5), 861–871. https://doi.org/10.1016/j.bpj.2009.11.011
  • Le, Y., Gan, Y., Fu, Y., Liu, J., Li, W., Zou, X., Zhou, Z., Wang, Z., Ouyang, G., & Yan, L. (2020). Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 555–564. https://doi.org/10.1080/14756366.2020.1715389/SUPPL_FILE/IENZ_A_1715389_SM2676.PDF
  • Lemmon, M. A., Schlessinger, J., & Ferguson, K. M. (2014). The EGFR family: Not so prototypical receptor tyrosine kinases. Cold Spring Harbor Perspectives in Biology, 6(4), a020768. https://doi.org/10.1101/cshperspect.a020768
  • Li, K., Du, Y., Li, L., & Wei, D.-Q. (2020). Bioinformatics approaches for anti-cancer drug discovery. Current Drug Targets, 21(1), 3–17. https://doi.org/10.2174/1389450120666190923162203
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Lopes, G. L., Vattimo, E. F. d Q., & de Castro Junior, G. (2015). Identifying activating mutations in the EGFR gene: Prognostic and therapeutic implications in non-small cell lung cancer. Jornal Brasileiro de Pneumologia: Publicacao Oficial da Sociedade Brasileira de Pneumologia e Tisilogia, 41(4), 365–375. https://doi.org/10.1590/S1806-37132015000004531
  • Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J., & Haber, D. A. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. The New England Journal of Medicine, 350(21), 2129–2139. https://doi.org/10.1056/NEJMOA040938/SUPPL_FILE/NEJMOA040938_APPENDIX.PDF
  • Ma, C., Wei, S., & Song, Y. (2011). T790M and acquired resistance of EGFR TKI: A literature review of clinical reports. Journal of Thoracic Disease, 3(1), 10–18. https://doi.org/10.3978/j.issn.2072-1439.2010.12.02
  • Ma, Y. M., Han, W., Li, J., Hu, L. H., & Zhou, Y. B. (2015). Physalin B not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in human colon cancer cells in vitro. Acta Pharmacologica Sinica, 6(4), 517–527. https://doi.org/10.1038/aps.2014.157
  • Ma, Z. F., Ahmad, J., Zhang, H., Khan, I., & Muhammad, S. (2020). Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. South African Journal of Botany, 129, 40–46. https://doi.org/10.1016/j.sajb.2018.12.002
  • Madi, N., Dany, M., Abdoun, S., & Usta, J. (2016). Moringa oleifera’s nutritious aqueous leaf extract has anticancerous effects by compromising mitochondrial viability in an ROS-dependent manner. Journal of the American College of Nutrition, 35(7), 604–613. https://doi.org/10.1080/07315724.2015.1080128
  • Martinez, L.-L. L., & Orrantia Borunda, E. (2016). DFT chemical reactivity analysis of biological molecules in the presence of silver ion. Organic Chemistry: Current Research, 4(4), 153. https://doi.org/10.4172/2161-0401.1000153
  • Mathialagan, S., Piotrowski, M. A., Tess, D. A., Feng, B., Litchfield, J., & Varma, M. V. (2017). Quantitative prediction of human renal clearance and drug-drug interactions of organic anion transporter substrates using in vitro transport data: A relative activity factor approach. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 45(4), 409–417. https://doi.org/10.1124/DMD.116.074294/-/DC1
  • Mehlman, C., Cadranel, J., Rousseau-Bussac, G., Lacave, R., Pujals, A., Girard, N., Callens, C., Gounant, V., Théou-Anton, N., Friard, S., Trédaniel, J., Blons, H., Dujon, C., Duchemann, B., Schischmanoff, P. O., Chinet, T., & Giroux Leprieur, E. (2019). Resistance mechanisms to osimertinib in EGFR-mutated advanced non-small-cell lung cancer: A multicentric retrospective French study. Lung Cancer (Amsterdam, Netherlands), 137, 149–156. https://doi.org/10.1016/J.LUNGCAN.2019.09.019
  • Mir, S. A., & Nayak, B. (2022). Exploring binding stability of hydroxy-3-(4-hydroxyphenyl)-5-(4-nitrophenyl)-5,5a,7,8,9,9a-hexahydrothiazolo[2,3-b] quinazolin-6-one with T790M/L858R EGFR-TKD. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2022.2053748
  • Mir, S. A., Muhammad, A., Padhiary, A., Ekka, N. J., Baitharu, I., Naik, P. K., & Nayak, B. (2023). Identification of potent EGFR-TKD inhibitors from NPACT database through combined computational approaches. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2171133
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 4329. https://doi.org/10.1038/s41598-018-22631-z
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand-receptor docking. Current Protocols in Bioinformatics, 24, 8.14.1–8.14.40. https://doi.org/10.1002/0471250953.bi0814s24
  • Mumtaz, M. Z., Kausar, F., Hassan, M., Javaid, S., & Malik, A. (2021). Anticancer activities of phenolic compounds from Moringa oleifera leaves: In vitro and in silico mechanistic study. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 12. https://doi.org/10.1186/s43088-021-00101-2
  • O’Leary, C., Gasper, H., Sahin, K. B., Tang, M., Kulasinghe, A., Adams, M. N., Richard, D. J., & O’Byrne, K. J. (2020). Epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC). Pharmaceuticals, 13(10), 273. https://doi.org/10.3390/ph13100273
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Ornnork, N., Kiriwan, D., Lirdprapamongkol, K., Choowongkomon, K., Svasti, J., & Eurtivong, C. (2020). Molecular dynamics, MM/PBSA and in vitro validation of a novel quinazoline-based EGFR tyrosine kinase inhibitor identified using structure-based in silico screening. Journal of Molecular Graphics & Modelling, 99, 107639. https://doi.org/10.1016/J.JMGM.2020.107639
  • Parmentier, Y., Bossant, M. J., Bertrand, M., & Walther, B. (2007). In vitro studies of drug metabolism. In Comprehensive medicinal chemistry II (Vol. 5, pp. 231–257). Elsevier Ltd. https://doi.org/10.1016/b0-08-045044-x/00125-5
  • Pearson, R. G. (2005). Chemical hardness and density functional theory. Journal of Chemical Sciences, 117(5), 369–377. https://doi.org/10.1007/BF02708340
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pirvu, L., Neagu, G., Terchescu, I., Albu, B., & Stefaniu, A. (2020). Comparative studies of two vegetal extracts from Stokesia laevis and Geranium pratense: Polyphenol profile, cytotoxic effect and antiproliferative activity. Open Chemistry, 18(1), 488–502. https://doi.org/10.1515/chem-2020-0098
  • Prajapati, C., Ankola, M., Upadhyay, T. K., Sharangi, A. B., Alabdallah, N. M., Al-Saeed, F. A., Muzammil, K., & Saeed, M. (2022). Moringa oleifera: Miracle plant with a plethora of medicinal, therapeutic, and economic importance. Horticulturae, 8(6), 492. https://doi.org/10.3390/horticulturae8060492
  • Radchenko, E. V., Dyabina, A. S., Palyulin, V. A., & Zefirov, N. S. (2016). Prediction of human intestinal absorption of drug compounds. Russian Chemical Bulletin, 65(2), 576–580. https://doi.org/10.1007/s11172-016-1340-0
  • Raghu, M. S., Pradeep Kumar, C. B., Prashanth, M. K., Yogesh Kumar, K., Prathibha, B. S., Kanthimathi, G., Alissa, S. A., Alghulikah, H. A., & Osman, S. M. (2021). Novel 1,3,5-triazine-based pyrazole derivatives as potential antitumor agents and EFGR kinase inhibitors: Synthesis, cytotoxicity, DNA binding, molecular docking and DFT studies. New Journal of Chemistry, 45(31), 13909–13924. https://doi.org/10.1039/D1NJ02419A
  • Rampogu, S., Park, C., Ravinder, D., Son, M., Baek, A., Zeb, A., Bavi, R., Kumar, R., Lee, G., Parate, S., Pawar, S. C., Park, Y., Park, S. J., & Lee, K. W. (2019). Pharmacotherapeutics and molecular mechanism of phytochemicals in alleviating hormone-responsive breast cancer. Oxidative Medicine and Cellular Longevity, 2019, 5189490. https://doi.org/10.1155/2019/5189490
  • Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/ja00051a040
  • Reardon, D. A., Wen, P. Y., & Mellinghoff, I. K. (2014). Targeted molecular therapies against epidermal growth factor receptor: Past experiences and challenges. Neuro-Oncology, 16(suppl 8), viii7–viii13. https://doi.org/10.1093/neuonc/nou232
  • Reddy, P. B., Reddy, M. B. M., Reddy, R., Chhajed, S., & Gupta, P. P. (2020). Molecular docking, PKPD, and assessment of toxicity of few chalcone analogues as EGFR inhibitor in search of anticancer agents. Structural Chemistry, 31(6), 2249–2255. https://doi.org/10.1007/s11224-020-01571-3
  • Roskoski, R. (2014). The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacological Research, 79, 34–74. https://doi.org/10.1016/j.phrs.2013.11.002
  • Sadek, K. M., Abouzed, T. K., Abouelkhair, R., & Nasr, S. (2017). The chemo-prophylactic efficacy of an ethanol Moringa oleifera leaf extract against hepatocellular carcinoma in rats. Pharmaceutical Biology, 55(1), 1458–1466. https://doi.org/10.1080/13880209.2017.1306713
  • Saini, N., Grewal, A. S., Lather, V., & Gahlawat, S. K. (2022). Natural alkaloids targeting EGFR in non-small cell lung cancer: Molecular docking and ADMET predictions. Chemico-Biological Interactions, 358, 109901. https://doi.org/10.1016/J.CBI.2022.109901
  • Samuvel Michael, D., Priya, M. K., Sidharthan, J., Kumar, M., Solomon, R. V., & Jonathan, D. R. (2021). Synthesis, crystallography, DFT, MTT assay, and molecular docking studies of an exocyclic double-bonded crystalline chalcone. Chemical Data Collections, 36, 100773. https://doi.org/10.1016/j.cdc.2021.100773
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Schalm, S. S., Dineen, T., Lim, S. M., Park, C.-W., Hsieh, J., Woessner, R., Zhang, Z., Wilson, K., Eno, M., Wilson, D., Williams, B., Campbell, J., De Savi, C., Stevison, F., Utt, C., Guzi, T., Dorsch, M., Hoeflich, K., & Cho, B. C. C. (2020). 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Annals of Oncology, 31, S839. https://doi.org/10.1016/j.annonc.2020.08.1610
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Seshacharyulu, P., Ponnusamy, M. P., Haridas, D., Jain, M., Ganti, A. K., & Batra, S. K. (2012). Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 15–31. https://doi.org/10.1517/14728222.2011.648617
  • Shah, R. R., & Shah, D. R. (2019). Safety and tolerability of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in oncology. Drug Safety, 42(2), 181–198. https://doi.org/10.1007/s40264-018-0772-x
  • Shahbaaz, M., Nkaule, A., & Christoffels, A. (2019). Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Scientific Reports, 9(1), 4405. https://doi.org/10.1038/s41598-019-40621-7
  • Sharifi-Rad, J., Quispe, C., Castillo, C. M. S., Caroca, R., Lazo-Vélez, M. A., Antonyak, H., Polishchuk, A., Lysiuk, R., Oliinyk, P., De Masi, L., Bontempo, P., Martorell, M., Daştan, S. D., Rigano, D., Wink, M., & Cho, W. C. (2022). Ellagic acid: A review on its natural sources, chemical stability, and therapeutic potential. Oxidative Medicine and Cellular Longevity, 2022, 3848084. https://doi.org/10.1155/2022/3848084
  • Sharma, N., Tan, M. A., & An, S. S. A. (2021). Phytosterols: Potential metabolic modulators in neurodegenerative diseases. International Journal of Molecular Sciences, 22(22), 12255. https://doi.org/10.3390/ijms222212255
  • Shin, J. M., Lee, K. M., Lee, H. J., Yun, J. H., & Nho, C. W. (2019). Physalin A regulates the Nrf2 pathway through ERK and p38 for induction of detoxifying enzymes. BMC Complementary and Alternative Medicine, 19(1), 1–9. https://doi.org/10.1186/S12906-019-2511-Y/FIGURES/7
  • Smith, D. A., Beaumont, K., Maurer, T. S., & Di, L. (2019). Clearance in drug design. Journal of Medicinal Chemistry, 62(5), 2245–2255. https://doi.org/10.1021/ACS.JMEDCHEM.8B01263/ASSET/IMAGES/MEDIUM/JM-2018-01263H_0010.GIF
  • Stamos, J., Sliwkowski, M. X., & Eigenbrot, C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. The Journal of Biological Chemistry, 277(48), 46265–46272. https://doi.org/10.1074/jbc.M207135200
  • Swathy, B., Menaka, M., & Veerareddy, P. R. (2022). In silico studies for tridax procumbens linn phyto constituents with anti-inflammatory receptors. Asian Journal of Pharmaceutics, 16(4), 494–498.
  • Takeda, M., Okamoto, I., & Nakagawa, K. (2015). Pooled safety analysis of EGFR-TKI treatment for EGFR mutation-positive non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands), 88(1), 74–79. https://doi.org/10.1016/j.lungcan.2015.01.026
  • Tiloke, C., Anand, K., Gengan, R. M., & Chuturgoon, A. A. (2018). Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomedicine & Pharmacotherapy, 108, 457–466. https://doi.org/10.1016/j.biopha.2018.09.060
  • Tiloke, C., Phulukdaree, A., & Chuturgoon, A. A. (2013). The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complementary and Alternative Medicine, 13, 226. https://doi.org/10.1186/1472-6882-13-226
  • Tokutomi, H., Takeda, T., Hoshino, N., & Akutagawa, T. (2018). Molecular structure of the photo-oxidation product of ellagic acid in solution. ACS Omega, 3(9), 11179–11183. https://doi.org/10.1021/ACSOMEGA.8B01716
  • Tripathi, S. K., & Biswal, B. K. (2021). Allosteric mutant-selective fourth-generation EGFR inhibitors as an efficient combination therapeutic in the treatment of non-small cell lung carcinoma. Drug Discovery Today, 26(6), 1466–1472. https://doi.org/10.1016/J.DRUDIS.2021.02.005
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/JCC.21334
  • Tsuneda, T., Song, J. W., Suzuki, S., & Hirao, K. (2010). On Koopmans’ theorem in density functional theory. The Journal of Chemical Physics, 133(17), 174101. https://doi.org/10.1063/1.3491272
  • Tumer, T. B., Rojas-Silva, P., Poulev, A., Raskin, I., & Waterman, C. (2015). Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from moringa oleifera. Journal of Agricultural and Food Chemistry, 63(5), 1505–1513. https://doi.org/10.1021/JF505014N
  • Vergara-Jimenez, M., Almatrafi, M. M., & Fernandez, M. L. (2017). Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 6(4), 91. https://doi.org/10.3390/antiox6040091
  • Wadanambi, P. M., & Mannapperuma, U. (2021). Computational study to discover potent phytochemical inhibitors against drug target, squalene synthase from Leishmania donovani. Heliyon, 7(6), e07178. https://doi.org/10.1016/J.HELIYON.2021.E07178
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/ACS.CHEMREV.9B00055/ASSET/IMAGES/MEDIUM/CR-2019-000558_M019.GIF
  • Wang, S., Song, Y., & Liu, D. (2017). EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Letters, 385, 51–54. https://doi.org/10.1016/J.CANLET.2016.11.008
  • Wee, P., & Wang, Z. (2017). Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 9(5), 52. https://doi.org/10.3390/cancers9050052
  • Westover, D., Zugazagoitia, J., Cho, B. C., Lovly, C. M., & Paz-Ares, L. (2018). Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Annals of Oncology, 29(suppl_1), i10–i19. https://doi.org/10.1093/ANNONC/MDX703
  • Wu, J. M., Flynn, J. F., & Wong, C. (2009). Anti-EGFR therapy: Mechanism and advances in clinical efficacy in breast cancer. Journal of Oncology, 2009, 526963. https://doi.org/10.1155/2009/526963
  • Wu, Y. L., Cheng, Y., Zhou, X., Lee, K. H., Nakagawa, K., Niho, S., Tsuji, F., Linke, R., Rosell, R., Corral, J., Migliorino, M. R., Pluzanski, A., Sbar, E. I., Wang, T., White, J. L., Nadanaciva, S., Sandin, R., & Mok, T. S. (2017). Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. The Lancet. Oncology, 18(11), 1454–1466. https://doi.org/10.1016/S1470-2045(17)30608-3
  • Wykosky, J., Fenton, T., Furnari, F., & Cavenee, W. K. (2011). Therapeutic targeting of epidermal growth factor receptor in human cancer: Successes and limitations. Chinese Journal of Cancer, 30(1), 5–12. https://doi.org/10.5732/CJC.010.10542
  • Zhang, X., Gureasko, J., Shen, K., Cole, P. A., & Kuriyan, J. (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 125(6), 1137–1149. https://doi.org/10.1016/j.cell.2006.05.013
  • Zhao, Y., Cheng, B., Chen, Z., Li, J., Liang, H., Chen, Y., Zhu, F., Li, C., Xu, K., Xiong, S., Lu, W., Chen, Z., Zhong, R., Zhao, S., Xie, Z., Liu, J., Liang, W., & He, J. (2021). Toxicity profile of epidermal growth factor receptor tyrosine kinase inhibitors for patients with lung cancer: A systematic review and network meta-analysis. Critical Reviews in Oncology/Hematology, 160, 103305. https://doi.org/10.1016/J.CRITREVONC.2021.103305
  • Zuccari, G., Baldassari, S., Ailuno, G., Turrini, F., Alfei, S., & Caviglioli, G. (2020). Formulation strategies to improve oral bioavailability of ellagic acid. Applied Sciences, 10(10), 3353. https://doi.org/10.3390/app10103353

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.