96
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Pan-genome mediated therapeutic target mining in Kingella kingae and inhibition assessment using traditional Chinese medicinal compounds: an informatics approach

ORCID Icon &
Pages 2872-2885 | Received 21 Feb 2023, Accepted 23 Apr 2023, Published online: 05 May 2023

References

  • Abuthakir, M. H. S., Jebastin, T., Sharmila, V., & Jeyam, M. (2020). Putative drug target identification in Tinea Causing pathogen Trichophyton rubrum using subtractive proteomics approach. Current Microbiology, 77(10), 2953–2962. https://doi.org/10.1007/s00284-020-02114-z
  • Al Abdali, K., McMullan, B., Toofanian, S., Manoharan, N., & Palasanthiran, P. (2021). Kingella kingae sternal osteomyelitis presenting as chest lump in a child. Journal of Paediatrics and Child Health, 57(10), 1686–1688. https://doi.org/10.1111/jpc.15335
  • Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. J. M. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258. https://doi.org/10.3390/metabo9110258
  • Basharat, Z., Akhtar, U., Khan, K., Alotaibi, G., Jalal, K., Abbas, M. N., Hayat, A., Ahmad, D., & Hassan, S. S. (2022). Differential analysis of Orientia tsutsugamushi genomes for therapeutic target identification and possible intervention through natural product inhibitor screening. Computers in Biology and Medicine, 141, 105165. https://doi.org/10.1016/j.compbiomed.2021.105165
  • Basharat, Z., Jahanzaib, M., & Rahman, N. (2021). Therapeutic target identification via differential genome analysis of antibiotic resistant Shigella sonnei and inhibitor evaluation against a selected drug target. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 94, 105004. https://doi.org/10.1016/j.meegid.2021.105004
  • Basharat, Z., Jahanzaib, M., Yasmin, A., & Khan, I. A. (2021). Pan-genomics, drug candidate mining and ADMET profiling of natural product inhibitors screened against Yersinia pseudotuberculosis. Genomics, 113(1 Pt 1), 238–244. https://doi.org/10.1016/j.ygeno.2020.12.015
  • Bidet, P., Basmaci, R., Guglielmini, J., Doit, C., Jost, C., Birgy, A., & Bonacorsi, S. (2016). Genome analysis of Kingella kingae strain KWG1 reveals how a beta-lactamase gene inserted in the chromosome of this species. Antimicrobial Agents and Chemotherapy, 60(1), 703–708. https://doi.org/10.1128/AAC.02192-15
  • Bonasoni, M. P., Palicelli, A., Dalla Dea, G., Comitini, G., Pazzola, G., Russello, G., Bertoldi, G., Bardaro, M., Zuelli, C., & Carretto, E. (2021). Kingella kingae Intrauterine Infection: An unusual cause of chorioamnionitis and miscarriage in a patient with undifferentiated connective tissue disease. Diagnostics (Basel), 11(2), 243. https://doi.org/10.3390/diagnostics11020243
  • Brogi, S., Quimque, M. T., Notarte, K. I., Africa, J. G., Hernandez, J. B., Tan, S. M., Calderone, V., & Macabeo, A. P. J. C. (2022). Virtual combinatorial library screening of quinadoline B derivatives against SARS-CoV-2 RNA-dependent RNA polymerase. Computation, 10(1), 7. https://doi.org/10.3390/computation10010007
  • Calixto, J., & Research, B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas, 33(2), 179–189. https://doi.org/10.1590/s0100-879x2000000200004
  • Chen, X., Schreiber, K., Appel, J., Makowka, A., Fahnrich, B., Roettger, M., Hajirezaei, M. R., Sonnichsen, F. D., Schonheit, P., Martin, W. F., & Gutekunst, K. (2016). The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 5441–5446. https://doi.org/10.1073/pnas.1521916113
  • Cho, C. K., Kang, P., Park, H. J., Ko, E., Mu, C. Y., Lee, Y. J., Choi, C. I., Kim, H. S., Jang, C. G., Bae, J. W., & Lee, S. Y. (2022). Physiologically based pharmacokinetic (PBPK) modeling of piroxicam with regard to CYP2C9 genetic polymorphism. Archives of Pharmacal Research, 45(5), 352–366. https://doi.org/10.1007/s12272-022-01388-0
  • Conway, T. (1992). The Entner-Doudoroff pathway: History, physiology and molecular biology. FEMS Microbiology Reviews, 9(1), 1–27. https://doi.org/10.1111/j.1574-6968.1992.tb05822.x
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • David, A., Islam, S., Tankhilevich, E., & Sternberg, M. J. E. (2022). The AlphaFold database of protein structures: A Biologist’s guide. Journal of Molecular Biology, 434(2), 167336. https://doi.org/10.1016/j.jmb.2021.167336
  • DeMarco, G., Chargui, M., Coulin, B., Borner, B., Steiger, C., Dayer, R., & Ceroni, D. (2021). Kingella kingae Osteoarticular infections approached through the prism of the pediatric orthopedist. Microorganisms, 10(1), 25. https://doi.org/10.3390/microorganisms10010025
  • Di Fiore, A., De Luca, V., Langella, E., Nocentini, A., Buonanno, M., Monti, S. M., Supuran, C. T., Capasso, C., De Simone, G. J. C., & Journal, S. B. (2022). Biochemical, structural, and computational studies of a γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. Computational and Structural Biotechnology Journal, 20, 4185–4194. https://doi.org/10.1016/j.csbj.2022.07.033
  • El Houmami, N., Durand, G. A., Bzdrenga, J., Darmon, A., Minodier, P., Seligmann, H., Raoult, D., & Fournier, P. E. (2018). A new highly sensitive and specific real-time PCR assay targeting the malate Dehydrogenase gene of Kingella kingae and application to 201 pediatric clinical specimens. Journal of Clinical Microbiology, 56(8) https://doi.org/10.1128/JCM.00505-18
  • Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W., & Milo, R. (2013). Glycolytic strategy as a tradeoff between energy yield and protein cost. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 10039–10044. https://doi.org/10.1073/pnas.1215283110
  • Fournier, P. E., Rouli, L., El Karkouri, K., Nguyen, T. T., Yagupsky, P., & Raoult, D. (2012). Genomic comparison of Kingella kingae strains. Journal of Bacteriology, 194(21), 5972–5972. https://doi.org/10.1128/JB.01418-12
  • Gouveia, C., Duarte, M., Norte, S., Arcangelo, J., Pinto, M., Correia, C., Simoes, M. J., Canhao, H., & Tavares, D. (2021). Kingella kingae displaced S. aureus as the most common cause of acute septic arthritis in children of all ages. The Pediatric Infectious Disease Journal, 40(7), 623–627. https://doi.org/10.1097/INF.0000000000003105
  • Huang, H., Wang, J., Li, K., & Ma, H. (2021). Successful conservative treatment of placenta accreta with traditional Chinese medicine: A case report. Medicine, 100(7), e24820. https://doi.org/10.1097/MD.0000000000024820
  • Ikemoto, T., Yokota, T., & Inoue, S. (2008). Some biological effects of Raspberry ketone and its precursor. ACS Sumposium Series, 988, 266–275. https://doi.org/10.1021/bk-2008-0988.ch023
  • Jachak, S. M., & Saklani, A. (2007). Challenges and opportunities in drug discovery from plants. 1251–1257.
  • Jalal, K., Khan, K., Hayat, A., Ahmad, D., Alotaibi, G., Uddin, R., Mashraqi, M. M., Alzamami, A., Aurongzeb, M., & Basharat, Z. (2022). Mining therapeutic targets from the antibiotic-resistant Campylobacter coli and virtual screening of natural product inhibitors against its riboflavin synthase. Molecular Diversity, https://doi.org/10.1007/s11030-022-10455-z
  • Jalal, K., Khan, K., Hayat, A., Alnasser, S. M., Meshal, A., & Basharat, Z. (2023). Pan-genomics of Escherichia albertii for antibiotic resistance profiling in different genome fractions and natural product mediated intervention: In Silico approach. Life, 13(2), 541. https://doi.org/10.3390/life13020541
  • Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. J. (2018). Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 7(1), 1–7. https://doi.org/10.15171/jhp.2018.01
  • Joye, R., Ceroni, D., Beghetti, M., Aggoun, Y., & Sologashvili, T. (2021). Fulminant infective endocarditis due to Kingella Kingae and several complications in a 6-year-old girl: A case report. Frontiers in Pediatrics, 9, 707760. https://doi.org/10.3389/fped.2021.707760
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kaplan, J. B., Lo, C., Xie, G., Johnson, S. L., Chain, P. S., Donnelly, R., Kachlany, S. C., & Balashova, N. V. (2012). Genome sequence of Kingella kingae septic arthritis isolate PYKK081. Journal of Bacteriology, 194(11), 3017–3017. https://doi.org/10.1128/JB.00421-12
  • Keene, A., Creighton, J., Anderson, T., & Walls, T. (2022). Kingella kingae Spondylodiscitis: Treatment failure with Flucloxacillin. The Pediatric Infectious Disease Journal, 41(1), 48–50. https://doi.org/10.1097/INF.0000000000003357
  • Kersters, K., & De Ley, J. (1968). The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie Van Leeuwenhoek, 34(4), 393–408. https://doi.org/10.1007/BF02046462
  • Kim, M., Baek, H. S., Lee, M., Park, H., Shin, S. S., Choi, D. W., & Lim, K. M. (2016). Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 32, 339–346. https://doi.org/10.1016/j.tiv.2016.02.003
  • Liu, S., Wang, S. X., Liu, W., Wang, C., Zhang, F. Z., Ye, Y. N., Wu, C. S., Zheng, W. X., Rao, N., & Guo, F. B. (2020). CEG 2.0: An updated database of clusters of essential genes including eukaryotic organisms. Database, 2020. https://doi.org/10.1093/database/baaa112
  • Lu, Q., Ubillas, R. P., Zhou, Y., Dubenko, L. G., Dener, J. M., Litvak, J., Phuan, P. W., Flores, M., Ye, Z., Gerber, R. E., Truong, T., & Bierer, D. E. (1999). Synthetic analogues of irlbacholine: A novel antifungal plant metabolite isolated from Irlbachia alata. Journal of Natural Products, 62(6), 824–828. https://doi.org/10.1021/np980425n
  • Luo, H., Lin, Y., Liu, T., Lai, F. L., Zhang, C. T., Gao, F., & Zhang, R. (2021). DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Research, 49(D1), D677–D686. https://doi.org/10.1093/nar/gkaa917
  • Matuschek, E., Ahman, J., Kahlmeter, G., & Yagupsky, P. (2018). Antimicrobial susceptibility testing of Kingella kingae with broth microdilution and disk diffusion using EUCAST recommended media. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 24(4), 396–401. https://doi.org/10.1016/j.cmi.2017.07.019
  • Medini, D., Donati, C., Tettelin, H., Masignani, V., & Rappuoli, R. (2005). The microbial pan-genome. Current Opinion in Genetics & Development, 15(6), 589–594. https://doi.org/10.1016/j.gde.2005.09.006
  • Muhammad, I., Rahman, N., Gul, E. N., Niaz, S., Basharat, Z., Rastrelli, L., Jayanthi, S., Efferth, T., & Khan, H. (2021). Screening of potent phytochemical inhibitors against SARS-CoV-2 protease and its two Asian mutants. Computers in Biology and Medicine, 133, 104362. https://doi.org/10.1016/j.compbiomed.2021.104362
  • Mustafa-Hellou, M., Sagi, N., Ofran, Y., Geffen, Y., & Ghanem-Zoubi, N. (2020). Endovascular infection with Kingella kingae complicated by septic arthritis in immunocompromised adult patient. Emerging Infectious Diseases, 26(12), 2999–3001. https://doi.org/10.3201/eid2612.191665
  • Muzzi, A., Masignani, V., & Rappuoli, R. (2007). The pan-genome: Towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discovery Today, 12(11–12), 429–439. JDdt https://doi.org/10.1016/j.drudis.2007.04.008
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Notarte, K. I. R., Quimque, M. T. J., Macaranas, I. T., Khan, A., Pastrana, A. M., Villaflores, O. B., Arturo, H. C. P., Pilapil Iv, D. Y. H., Tan, S. M. M., Wei, D.-Q., Wenzel-Storjohann, A., Tasdemir, D., Yen, C.-H., Ji, S. Y., Kim, G.-Y., Choi, Y. H., & Macabeo, A. P. G. (2023). Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 level by a flavonol-enriched n-butanol fraction from Uvaria alba. ACS Omega, 8(6), 5377–5392. https://doi.org/10.1021/acsomega.2c06451
  • Nurul-Laila, S., Chai, K. S., Liza-Sharmini, A. T., & Shatriah, I. (2017). Kingella kingae Keratitis in a child with underlying vernal Keratoconjunctivitis. Case Reports in Ophthalmological Medicine, 2017, 1087821. https://doi.org/10.1155/2017/1087821
  • Olijve, L., Amarasena, L., Best, E., Blyth, C., van den Boom, M., Bowen, A., Bryant, P. A., Buttery, J., Dobinson, H. C., Davis, J., Francis, J., Goldsmith, H., Griffiths, E., Hung, T. Y., Huynh, J., Kesson, A., Meehan, A., McMullan, B., Nourse, C., … Walls, T. (2021). The role of Kingella kingae in pre-school aged children with bone and joint infections. The Journal of Infection, 83(3), 321–331. https://doi.org/10.1016/j.jinf.2021.06.028
  • Oselusi, S. O., Christoffels, A., & Egieyeh, S. A. (2021). Cheminformatic characterization of natural antimicrobial products for the development of new lead compounds. Molecules, 26(13), 3970. https://doi.org/10.3390/molecules26133970
  • Parrott, N., & Lavé, T. (2002). Prediction of intestinal absorption: Comparative assessment of gastroplus™ and idea. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 17(1–2), 51–61. https://doi.org/10.1016/S0928-0987(02)00132-X
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pitts, C. C., Smith, W. R., & Conklin, M. J. (2020). Pediatric infectious Prepatellar bursitis with Kingella kingae. Case Reports in Orthopedics, 2020, 6586517. https://doi.org/10.1155/2020/6586517
  • Quimque, M. T., Notarte, K. I., Adviento, X. A., Cabunoc, M. H., de Leon, V. N., Dr, F. S. L., Lugtu, E. J., Manzano, J. A., Monton, S. N., & Muñoz, J. E. (2021). Polyphenolic natural products active in silico against SARS-CoV-2 spike receptor binding domains and non-structural proteins-a review.
  • Quimque, M. T. J., Notarte, K. I. R., de Leon, V. N. O., Manzano, J. A. H., Muñoz, J. E. R., Pilapil, I. V., Dyh, Lim, J. A. K., & Macabeo, A. P. G. (2022). Computationally repurposed natural products targeting SARS-CoV-2 attachment and entry mechanisms. In Frontiers of COVID-19: Scientific and clinical aspects of the novel coronavirus 2019 (pp. 505–537). Springer.
  • Quimque, M., Notarte, K., Letada, A., Fernandez, R., Pilapil, D., Pueblos, K., Agbay, J., Dahse, H., Wenzel-Storjohann, A., & Tasdemir, D. (2021). Potential cancer-and Alzheimer’s disease-targeting phosphodiesterase inhibitors from Uvaria alba. Insights from. Vitro.
  • Ramana, K., & Mohanty, S. (2009). An adult case of urinary tract infection with Kingella kingae: A case report. Journal of Medical Case Reports, 3(1), 7236. https://doi.org/10.1186/1752-1947-3-7236
  • Rodighiero, V. (1999). Effects of liver disease on pharmacokinetics. An update. Clinical Pharmacokinetics, 37(5), 399–431. https://doi.org/10.2165/00003088-199937050-00004
  • Rowland Yeo, K., Aarabi, M., Jamei, M., & Rostami-Hodjegan, A. (2011). Modeling and predicting drug pharmacokinetics in patients with renal impairment. Expert Review of Clinical Pharmacology, 4(2), 261–274. https://doi.org/10.1586/ecp.10.143
  • Samara, E., Lutz, N., & Zambelli, P. Y. (2022). Kingella kingae spinal infections in children. Children, 9(5), 705. https://doi.org/10.3390/children9050705
  • Samara, E., Spyropoulou, V., Tabard-Fougere, A., Merlini, L., Valaikaite, R., Dhouib, A., Manzano, S., Juchler, C., Dayer, R., & Ceroni, D. (2019). Kingella kingae and osteoarticular infections. Pediatrics, 144(6) https://doi.org/10.1542/peds.2019-1509
  • Sanober, G., Ahmad, S., & Azam, S. S. (2017). Identification of plausible drug targets by investigating the druggable genome of MDR Staphylococcus epidermidis. Gene Reports, 7, 147–153. https://doi.org/10.1016/j.genrep.2017.04.008
  • Soffer, G., Kaman, K., & Li, X. M. (2020). Successful management of eosinophilic esophagitis using traditional Chinese medicine: A case report. Yale Journal of Biology and Medicine, 93, 685–688.
  • Sun, L., Yagoda, S., Du, Y., & von Moltke, L. (2019). Effect of hepatic and renal impairment on the pharmacokinetics of olanzapine and samidorphan given in combination as a bilayer tablet. Drug Design, Development and Therapy, 13, 2941–2955. https://doi.org/10.2147/DDDT.S205000
  • Sunder Raj, D., Kesavan, D. K., Kottaisamy, C. P. D., Kumar, V. P., Hopper, W., & Sankaran, U. JJoBS, Dynamics (2022). Atomic level and structural understanding of natural ligands inhibiting Helicobacter pylori peptide deformylase through ligand and receptor based screening, SIFT, molecular dynamics and DFT–a structural computational approach. Journal of Biomolecular Structure and Dynamics, 1–22. https://doi.org/10.1080/07391102.2022.2050946
  • Tong, M., & Brown, E. D. (2023). Food for thought: Opportunities to target carbon metabolism in antibacterial drug discovery.
  • Wang, J., & Hou, T. (2015). Advances in computationally modeling human oral bioavailability. Advanced Drug Delivery Reviews, 86, 11–16. https://doi.org/10.1016/j.addr.2015.01.001
  • Wang, H., Wang, Y., Humphris, S., Nie, W., Zhang, P., Wright, F., Campbell, E., Hu, B., Fan, J., & Toth, I. (2021). Pectobacterium atrosepticum KDPG aldolase, Eda, participates in the Entner–Doudoroff pathway and independently inhibits expression of virulence determinants. Molecular Plant Pathology, 22(2), 271–283. https://doi.org/10.1111/mpp.13025
  • Wang, J., Wong, Y. K., & Liao, F. (2018). What has traditional Chinese medicine delivered for modern medicine? Expert Reviews in Molecular Medicine, 20, e4. https://doi.org/10.1017/erm.2018.3
  • Wang, H., Yang, Z., Du, S., Ma, L., Liao, Y., Wang, Y., Toth, I., & Fan, J. (2018). Characterization of Pectobacterium carotovorum proteins differentially expressed during infection of Zantedeschia elliotiana in vivo and in vitro which are essential for virulence. Molecular Plant Pathology, 19(1), 35–48. JMPP https://doi.org/10.1111/mpp.12493
  • Wilmes, D., Omoumi, P., Squifflet, J., Cornu, O., Rodriguez-Villalobos, H., & Yombi, J. C. (2012). Osteomyelitis pubis caused by Kingella kingae in an adult patient: Report of the first case. BMC Infectious Diseases, 12(1), 236. https://doi.org/10.1186/1471-2334-12-236
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
  • Wong, M., Williams, N., & Cooper, C. (2020). Systematic review of Kingella kingae musculoskeletal infection in children: Epidemiology, impact and management strategies. Pediatric Health, Medicine and Therapeutics, 11, 73–84. https://doi.org/10.2147/PHMT.S217475
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yagupsky, P. (2017). Diagnosing Kingella kingae infections in infants and young children. Expert Review of anti-Infective Therapy, 15(10), 925–934. https://doi.org/10.1080/14787210.2017.1381557
  • Yagupsky, P. (2018). Detection of respiratory colonization by Kingella kingae and the Novel Kingella negevensis species in children: Uses and methodology. Journal of Clinical Microbiology, 56(10) https://doi.org/10.1128/JCM.00633-18
  • Yagupsky, P. (2022). Pharyngeal colonization by Kingella kingae, transmission, and pathogenesis of invasive infections: A narrative review. Microorganisms, 10(3), 637. https://doi.org/10.3390/microorganisms10030637
  • Yu, F., Xu, N., Zhao, B., Ren, X., & Zhang, F. (2018). Successful treatment of isolated oral lichen planus on lower lip with traditional Chinese medicine and topical wet dressing: A case report. Medicine, 97(50), e13630. https://doi.org/10.1097/MD.0000000000013630
  • Yuan, Y., He, Q., Zhang, S., Li, M., Tang, Z., Zhu, X., Jiao, Z., Cai, W., & Xiang, X. (2022). Application of physiologically based pharmacokinetic modeling in preclinical studies: A feasible strategy to practice the principles of 3Rs. Frontiers in Pharmacology, 13, 895556. https://doi.org/10.3389/fphar.2022.895556
  • Zhang, F., Bartels, M., Clark, A., Erskine, T., Auernhammer, T., Bhhatarai, B., Wilson, D., & Marty, S. (2018). Performance evaluation of the GastroPlus(TM) software tool for prediction of the toxicokinetic parameters of chemicals. SAR and QSAR in Environmental Research, 29(11), 875–893. https://doi.org/10.1080/1062936X.2018.1518928
  • Zheng, Z. Z., Ma, N. N., Li, L., & Jiang, D. (2021). Efficacy of Traditional Chinese Medicine on COVID-19: Two case reports. Medical Acupuncture, 33(1), 92–102. https://doi.org/10.1089/acu.2020.1432

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.