440
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Chemical library design, QSAR modeling and molecular dynamics simulations of naturally occurring coumarins as dual inhibitors of MAO-B and AChE

, , , & ORCID Icon
Pages 1629-1646 | Received 19 Feb 2023, Accepted 05 Apr 2023, Published online: 18 May 2023

References

  • Ahmad, I., Kumar, D., & Patel, H. (2022). Computational investigation of phytochemicals from Withania somnifera (Indian ginseng/ashwagandha) as plausible inhibitors of GluN2B-containing NMDA receptors. Journal of Biomolecular Structure & Dynamics, 40(17), 7991–8003. https://doi.org/10.1080/07391102.2021.1905553
  • Azam, F., Madi, A. M., & Ali, H. I. (2012). Molecular docking and prediction of pharmacokinetic properties of dual mechanism drugs that block MAO-B and adenosine A2A receptors for the treatment of Parkinson’s disease. Journal of Young Pharmacists: JYP, 4(3), 184–192. https://doi.org/10.4103/0975-1483.100027
  • Bara-Jimenez, W., Sherzai, A., Dimitrova, T., Favit, A., Bibbiani, F., Gillespie, M., Morris, M. J., Mouradian, M. M., & Chase, T. N. (2003). Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology, 61(3), 293–296. https://doi.org/10.1212/01.wnl.0000073136.00548.d4
  • Barak, D., Kronman, C., Ordentlich, A., Ariel, N., Bromberg, A., Marcus, D., Lazar, A., Velan, B., & Shafferman, A. (1994). Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. Journal of Biological Chemistry, 269(9), 6296–6305. https://doi.org/10.1016/S0021-9258(17)37371-4
  • Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative diseases and oxidative stress. Nature Reviews. Drug Discovery, 3(3), 205–214. https://doi.org/10.1038/nrd1330
  • Bibbiani, F. O. H. J. D., Oh, J. D., Petzer, J. P., Castagnoli, N., Jr, Chen, J. F., Schwarzschild, M. A., & Chase, T. N. (2003). A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Experimental Neurology, 184(1), 285–294. https://doi.org/10.1016/s0014-4886(03)00250-4
  • Binda, C., Wang, J., Pisani, L., Caccia, C., Carotti, A., Salvati, P., Edmondson, D. E., & Mattevi, A. (2007). Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs. Journal of Medicinal Chemistry, 50(23), 5848–5852. https://doi.org/10.1021/jm070677y
  • Biovia, D. S. (2017). Discovery studio visualizer. 936.
  • Boulaamane, Y., Ahmad, I., Patel, H., Das, N., Britel, M. R., & Maurady, A. (2023). Structural exploration of selected C6 and C7-substituted coumarin isomers as selective MAO-B inhibitors. Journal of Biomolecular Structure and Dynamics, 41(6), 2326–2340. https://doi.org/10.1080/07391102.2022.2033643
  • Boulaamane, Y., Ibrahim, M. A., Britel, M. R., & Maurady, A. (2022). In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA2AR antagonists for the treatment of Parkinson’s disease. Journal of Integrative Bioinformatics, 19(4), 16-17. https://doi.org/10.1515/jib-2021-0027
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., … Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, November). (pp. 84–es). https://doi.org/10.1145/1188455.1188544
  • Brühlmann, C., Ooms, F., Carrupt, P. A., Testa, B., Catto, M., Leonetti, F., Altomare, C., & Carotti, A. (2001). Coumarins derivatives as dual inhibitors of acetylcholinesterase and monoamine oxidase. Journal of Medicinal Chemistry, 44(19), 3195–3198. https://doi.org/10.1021/jm010894d
  • Burggraaff, L., van Vlijmen, H. W. T., IJzerman, A. P., & van Westen, G. J. P. (2020). Quantitative prediction of selectivity between the A1 and A2A adenosine receptors. Journal of Cheminformatics, 12(1), 33. https://doi.org/10.1186/s13321-020-00438-3
  • Carradori, S., D'Ascenzio, M., Chimenti, P., Secci, D., & Bolasco, A. (2014). Selective MAO-B inhibitors: A lesson from natural products. Molecular Diversity, 18(1), 219–243. https://doi.org/10.1007/s11030-013-9490-6
  • Chaudhuri, K. R., Healy, D. G., & Schapira, A. H, National Institute for Clinical Excellence. (2006). Non-motor symptoms of Parkinson’s disease: Diagnosis and management. The Lancet. Neurology, 5(3), 235–245. https://doi.org/10.1016/S1474-4422(06)70373-8
  • Chen, J. H., Huang, T. W., & Hong, C. T. (2021). Cholinesterase inhibitors for gait, balance, and fall in Parkinson disease: A meta-analysis. Npj Parkinson’s Disease, 7(1), 1–7. https://doi.org/10.1038/s41531-021-00251-1
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Daoud, I., Melkemi, N., Salah, T., & Ghalem, S. (2018). Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors. Computational Biology and Chemistry, 74, 304–326. https://doi.org/10.1016/j.compbiolchem.2018.03.021
  • Dean, F. M. (1952). Naturally occurring coumarins. Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products/Progrès Dans La Chimie Des Substances Organiques Naturelles, 225–291.
  • Dhananjayan, K., Sumathy, A., & Palanisamy, S. (2013). Molecular docking studies and in-vitro acetylcholinesterase inhibition by terpenoids and flavonoids. Asian Journal of Research in Chemistry, 6(11), 1011–1017.
  • Di Paolo, M. L., Cozza, G., Milelli, A., Zonta, F., Sarno, S., Minniti, E., Ursini, F., Rosini, M., & Minarini, A. (2019). Benextramine and derivatives as novel human monoamine oxidases inhibitors: An integrated approach. The FEBS Journal, 286(24), 4995–5015. https://doi.org/10.1111/febs.14994
  • Dias, V., Junn, E., & Mouradian, M. M. (2013). The role of oxidative stress in Parkinson’s disease. Journal of Parkinson’s Disease, 3(4), 461–491. https://doi.org/10.3233/JPD-130230
  • Ding, Y., Chen, M., Guo, C., Zhang, P., & Wang, J. (2021). Molecular fingerprint-based machine learning assisted QSAR model development for prediction of ionic liquid properties. Journal of Molecular Liquids, 326, 115212. https://doi.org/10.1016/j.molliq.2020.115212
  • Dugger, B. N., & Dickson, D. W. (2017). Pathology of neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 9(7), a028035. https://doi.org/10.1101/cshperspect.a028035
  • Edmondson, D. E., & Newton-Vinson, P. (2001). The covalent FAD of monoamine oxidase: Structural and functional role and mechanism of the flavinylation reaction. Antioxidants & Redox Signaling, 3(5), 789–806. https://doi.org/10.1089/15230860152664984
  • Ekström, F., Gottinger, A., Forsgren, N., Catto, M., Iacovino, L. G., Pisani, L., & Binda, C. (2022). Dual Reversible Coumarin Inhibitors Mutually Bound to Monoamine Oxidase B and Acetylcholinesterase Crystal Structures. ACS Medicinal Chemistry Letters, 13(3), 499–506. https://doi.org/10.1021/acsmedchemlett.2c00001
  • Ferdausi, N., Islam, S., Rimti, F. H., Quayum, S. T., Arshad, E. M., Ibnat, A., Islam, T., Arefin, A., Ema, T. I., Biswas, P., Dey, D., & Azad, S. A. (2022). Point-specific interactions of isovitexin with the neighboring amino acid residues of the hACE2 receptor as a targeted therapeutic agent in suppressing the SARS-CoV-2 influx mechanism. Journal of Advanced Veterinary and Animal Research, 9(2), 230–240. https://doi.org/10.5455/javar.2022.i588
  • Fukunishi, Y., & Lintuluoto, M. (2010). Development of chemical compound libraries for in silico drug screening. Current Computer-Aided Drug Design, 6(2), 90–102. https://doi.org/10.2174/157340910791202450
  • Garrard, A. (2014). Coumarins. In Encyclopedia of Toxicology. (pp. 1052–1054). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00798-3
  • Gola, J., Obrezanova, O., Champness, E., & Segall, M. (2006). ADMET property prediction: The state of the art and current challenges. QSAR & Combinatorial Science, 25(12), 1172–1180. https://doi.org/10.1002/qsar.200610093
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5-6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • Hosea, N. A., Radić, Z., Tsigelny, I., Berman, H. A., Quinn, D. M., & Taylor, P. (1996). Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates. Biochemistry, 35(33), 10995–11004. https://doi.org/10.1021/bi9611220
  • Huey, R., & Morris, G. M. (2008). Using AutoDock 4 with AutoDocktools: A tutorial. The Scripps Research Institute. 8, 54–56.
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM‐GUI: A web‐based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kaakkola, S. (2010). Problems with the present inhibitors and a relevance of new and improved COMT inhibitors in Parkinson’s disease. International Review of Neurobiology, 95, 207–225.
  • Kalia, L. V., Kalia, S. K., & Lang, A. E. (2015). Disease‐modifying strategies for Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 30(11), 1442–1450. https://doi.org/10.1002/mds.26354
  • Katari, S. K., Natarajan, P., Swargam, S., Kanipakam, H., Pasala, C., & Umamaheswari, A. (2016). Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations. Journal of Receptor and Signal Transduction Research, 36(6), 558–571. https://doi.org/10.3109/10799893.2016.1141955
  • Khanam, S., Subitsha, A. J., & Sabu, S. (2021). Plants as a promising source for the treatment of parkinson disease: A systematic review. IP International Journal of Comprehensive and Advanced Pharmacology, 5(4), 158–166. https://doi.org/10.18231/j.ijcaap.2020.032
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Krishnaveni, M. (2015). Docking, simulation studies of desulphosinigrin–cyclin dependent kinase 2, an anticancer drug target. Int. J. Pharm. Sci. Rev. Res, 30(2), 115–118.
  • Kua, J., Zhang, Y., & McCammon, J. A. (2002). Studying enzyme binding specificity in acetylcholinesterase using a combined molecular dynamics and multiple docking approach. Journal of the American Chemical Society, 124(28), 8260–8267. https://doi.org/10.1021/ja020429l
  • Lacy, A., & O'Kennedy, R. (2004). Studies on Coumarins and Coumarin-Related Compounds to Determine their Therapeutic Role in the Treatment of Cancer. Current Pharmaceutical Design, 10(30), 3797–3811. https://doi.org/10.2174/1381612043382693
  • Landrum, G. (2013). RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling.
  • Lang, A. E., & Marras, C. (2014). Initiating dopaminergic treatment in Parkinson’s disease. Lancet (London, England), 384(9949), 1164–1166. https://doi.org/10.1016/S0140-6736(14)60962-4
  • Lee, A., & Gilbert, R. M. (2016). Epidemiology of Parkinson disease. Neurologic Clinics, 34(4), 955–965. https://doi.org/10.1016/j.ncl.2016.06.012
  • Lin, J., Sahakian, D. C., De Morais, S. M., Xu, J. J., Polzer, R. J., & Winter, S. M. (2003). The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Current Topics in Medicinal Chemistry, 3(10), 1125–1154. https://doi.org/10.2174/1568026033452096
  • Lu, J. J., Pan, W., Hu, Y. J., & Wang, Y. T. (2012). Multi-target drugs: The trend of drug research and development. PLoS One. 7(6), e40262. https://doi.org/10.1371/journal.pone.0040262
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One. 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Mateev, E., Valkova, I., Angelov, B., Georgieva, M., & Zlatkov, A. (2022). Validation through re-docking, cross-docking and ligand enrichment in various well-resoluted MAO-B receptors. International Journal of Pharmaceutical Sciences and Research. 13, 1099–1107.
  • McKinney, W. (2011). pandas: A foundational Python library for data analysis and statistics. Python for High Performance and Scientific Computing, 14(9), 1–9.
  • Melchionna, S., Ciccotti, G., & Lee Holian, B. (1993). Hoover NPT dynamics for systems varying in shape and size. Molecular Physics, 78(3), 533–544. https://doi.org/10.1080/00268979300100371
  • Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magariños, M. P., Mosquera, J. F., Mutowo, P., Nowotka, M., Gordillo-Marañón, M., Hunter, F., Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N., Radoux, C. J., Segura-Cabrera, A., Hersey, A., & Leach, A. R. (2019). ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1), D930–D940. https://doi.org/10.1093/nar/gky1075
  • Messaad, M., Dhouib, I., Abdelhedi, M., & Khemakhem, B. (2022). Synthesis, bioassay and molecular docking of novel pyrazole and pyrazolone derivatives as acetylcholinesterase inhibitors. Journal of Molecular Structure, 1263, 133105. https://doi.org/10.1016/j.molstruc.2022.133105
  • Milczek, E. M., Binda, C., Rovida, S., Mattevi, A., & Edmondson, D. E. (2011). The ‘gating’residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition. The FEBS Journal, 278(24), 4860–4869. https://doi.org/10.1111/j.1742-4658.2011.08386.x
  • Möller, D., Óprzynski, J., Müller, A., & Fischer, J. (1992). Prediction of thermodynamic properties of fluid mixtures by molecular dynamics simulations: Methane-ethane. Molecular Physics, 75(2), 363–378. https://doi.org/10.1080/00268979200100291
  • Murray, R. D. (2002). The naturally occurring coumarins. Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products, 1–619.
  • Ntie-Kang, F. (2013). An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 2(1), 1–11. https://doi.org/10.1186/2193-1801-2-353
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Pasrija, P., Jha, P., Upadhyaya, P., Khan, M., & Chopra, M. (2022). Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery. Current Topics in Medicinal Chemistry, 22(20), 1692–1727. https://doi.org/10.2174/1568026622666220701091339
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pitchai, A., Rajaretinam, R. K., Mani, R., & Nagarajan, N. (2020). Molecular interaction of human acetylcholinesterase with trans-tephrostachin and derivatives for Alzheimer’s disease. Heliyon, 6(9), e04930. https://doi.org/10.1016/j.heliyon.2020.e04930
  • Poewe, W., & Mahlknecht, P. (2020). Pharmacologic treatment of motor symptoms associated with Parkinson disease. Neurologic Clinics, 38(2), 255–267. https://doi.org/10.1016/j.ncl.2019.12.002
  • Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A.-E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3(1), 1–21. https://doi.org/10.1038/nrdp.2017.13
  • Pourshojaei, Y., Abiri, A., Eskandari, K., Haghighijoo, Z., Edraki, N., & Asadipour, A. (2019). phenoxyethyl piperidine/Morpholine Derivatives as pAS and cAS inhibitors of cholinesterases: Insights for future Drug Design. Scientific Reports, 9(1), 1–19. https://doi.org/10.1038/s41598-019-56463-2
  • Radic, Z., Pickering, N. A., Vellom, D. C., Camp, S., & Taylor, P. (1993). Three distinct domains in the cholinesterase molecule confer selectivity for acetyl-and butyrylcholinesterase inhibitors. Biochemistry, 32(45), 12074–12084. https://doi.org/10.1021/bi00096a018
  • Ranjan, A., Kumar, A., Gulati, K., Thakur, S., & Jindal, T. (2015). Role of aromatic amino acids in stabilizing organophosphate and human acetylcholinesterase complex. Journal of Current Pharma Research, 5(4), 1632–1639. https://doi.org/10.33786/JCPR.2015.v05i04.006
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Sarker, S. D., & Nahar, L. (2017). Progress in the chemistry of naturally occurring coumarins. Progress in the Chemistry of Organic Natural Products, 106, 241–304. https://doi.org/10.1007/978-3-319-59542-9_3
  • Shen, T., Tai, K., Henchman, R. H., & McCammon, J. A. (2002). Molecular dynamics of acetylcholinesterase. Accounts of Chemical Research, 35(6), 332–340. https://doi.org/10.1021/ar010025i
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Singla, R. K., Agarwal, T., He, X., & Shen, B. (2021). Herbal resources to combat a progressive & degenerative nervous system disorder-Parkinson’s disease. Current Drug Targets, 22(6), 609–630. https://doi.org/10.2174/1389450121999201013155202
  • Singla, D., Sharma, A., Kaur, J., Panwar, B., & Raghava, G. P. (2010). BIAdb: A curated database of benzylisoquinoline alkaloids. BMC Pharmacology, 10(1), 8. https://doi.org/10.1186/1471-2210-10-4
  • Soine, T. O. (1964). Naturally occurring coumarins and related physiological activities. Journal of Pharmaceutical Sciences, 53(3), 231–264. https://doi.org/10.1002/jps.2600530302
  • Stefanachi, A., Leonetti, F., Pisani, L., Catto, M., & Carotti, A. (2018). Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules, 23(2), 250. https://doi.org/10.3390/molecules23020250
  • Sugimoto, H., Yamanish, Y., Iimura, Y., & Kawakami, Y. (2000). Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Current Medicinal Chemistry, 7(3), 303–339. https://doi.org/10.2174/0929867003375191
  • Tarasova, O. A., Urusova, A. F., Filimonov, D. A., Nicklaus, M. C., Zakharov, A. V., & Poroikov, V. V. (2015). QSAR modeling using large-scale databases: Case study for HIV-1 reverse transcriptase inhibitors. Journal of Chemical Information and Modeling, 55(7), 1388–1399. https://doi.org/10.1021/acs.jcim.5b00019
  • Tetko, I. V., & Engkvist, O. (2020). From big data to artificial intelligence: Chemoinformatics meets new challenges. Journal of Cheminformatics, 12(1), 3. https://doi.org/10.1186/s13321-020-00475-y
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Laar, T., De Deyn, P. P., Aarsland, D., Barone, P., & Galvin, J. E. (2011). Effects of cholinesterase inhibitors in Parkinson’s disease dementia: A review of clinical data. CNS Neuroscience & Therapeutics, 17(5), 428–441. https://doi.org/10.1111/j.1755-5949.2010.00166.x
  • Venugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed Research International, 2013, 963248. https://doi.org/10.1155/2013/963248
  • Wang, J., Lai, S., Kong, Y., Yao, W., Chen, X., & Liu, J. (2022). The protonation state of Glu202 in acetylcholinesterase. Proteins: Structure, Function, and Bioinformatics, 90(2), 485–492. https://doi.org/10.1002/prot.26243
  • Wu, Z., Zhu, M., Kang, Y., Leung, E. L.-H., Lei, T., Shen, C., Jiang, D., Wang, Z., Cao, D., & Hou, T. (2021). Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Briefings in Bioinformatics, 22(4), bbaa321. https://doi.org/10.1093/bib/bbaa321
  • Xia, R., & Mao, Z. H. (2012). Progression of motor symptoms in Parkinson’s disease. Neuroscience Bulletin, 28(1), 39–48. https://doi.org/10.1007/s12264-012-1050-z
  • Yusufzai, S. K., Khan, M. S., Sulaiman, O., Osman, H., & Lamjin, D. N. (2018). Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chemistry Central Journal, 12(1), 1–57. https://doi.org/10.1186/s13065-018-0497-z
  • Zhao, L., Ciallella, H. L., Aleksunes, L. M., & Zhu, H. (2020). Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discovery Today. 25(9), 1624–1638. https://doi.org/10.1016/j.drudis.2020.07.005
  • Zhou, Y., Wang, S., & Zhang, Y. (2010). Catalytic reaction mechanism of acetylcholinesterase determined by Born − Oppenheimer ab initio QM/MM molecular dynamics simulations. The Journal of Physical Chemistry. B, 114(26), 8817–8825. https://doi.org/10.1021/jp104258d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.