122
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Conformational dynamics of trypsin in the presence of caffeic acid: a spectroscopic and computational investigation

, , &
Pages 3108-3117 | Received 19 Oct 2022, Accepted 01 May 2023, Published online: 06 Jun 2023

References

  • Ali, M. S., & Al-Lohedan, H. A. (2014). Interaction of human serum albumin with sulfadiazine. Journal of Molecular Liquids, 197, 124–130. https://doi.org/10.1016/j.molliq.2014.04.029
  • Asemi-Esfahani, Z., Shareghi, B., Farhadian, S., & Momeni, L. (2021). Effect of Naphthol yellow S as a food dye on the lysozyme structure and its mechanisms of action. Journal of Molecular Liquids, 332, 115846. https://doi.org/10.1016/j.molliq.2021.115846
  • Chanphai, P., Thomas, T., & Tajmir-Riahi, H. (2016). Conjugation of biogenic and synthetic polyamines with serum proteins: A comprehensive review. International Journal of Biological Macromolecules, 92, 515–522. https://doi.org/10.1016/j.ijbiomac.2016.07.049
  • Chen, J. H., & Ho, C.-T. (1997). Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of Agricultural and Food Chemistry, 45(7), 2374–2378. https://doi.org/10.1021/jf970055t
  • Cui, F., Yang, K., & Li, Y. (2015). Investigate the binding of catechins to trypsin using docking and molecular dynamics simulation. PLoS One, 10(5), e0125848. https://doi.org/10.1371/journal.pone.0125848
  • Diao, M., Liang, Y., Zhao, J., Zhang, J., & Zhang, T. (2022). Complexation of ellagic acid with α-lactalbumin and its antioxidant property. Food Chemistry, 372, 131307. https://doi.org/10.1016/j.foodchem.2021.131307
  • Eslami-Farsani, R., Shareghi, B., Farhadian, S., & Momeni, L. (2020a). Experimental and theoretical investigations on the interaction of glucose molecules with myoglobin in the aqueous solution using theoretical and experimental methods. Journal of Biomolecular Structure and Dynamics, 39(17), 6384–6395. https://doi.org/10.1080/07391102.2020.1798283
  • Eslami-Farsani, R., Shareghi, B., Farhadian, S., & Momeni, L. (2020b). Insight into the binding of glycerol with myoglobin: Spectroscopic and MD simulation approach. International Journal of Biological Macromolecules, 159, 433–443. https://doi.org/10.1016/j.ijbiomac.2020.04.065
  • Farajzadeh-Dehkordi, N., Farhadian, S., Zahraei, Z., Gholamian-Dehkordi, N., & Shareghi, B. (2021). Interaction of reactive Red195 with human serum albumin: Determination of the binding mechanism and binding site by spectroscopic and molecular modeling methods. Journal of Molecular Liquids, 327, 114835. https://doi.org/10.1016/j.molliq.2020.114835
  • Farhadian, S., Hashemi-Shahraki, F., Amirifar, S., Asadpour, S., Shareghi, B., Heidari, E., Shakerian, B., Rafatifard, M., & Firooz, A. R. (2022). Malachite Green, the hazardous materials that can bind to Apo-transferrin and change the iron transfer. International Journal of Biological Macromolecules, 194, 790–799. https://doi.org/10.1016/j.ijbiomac.2021.11.126
  • Fasman, G. D. (2013). Circular dichroism and the conformational analysis of biomolecules. Springer Science & Business Media.
  • Ferraro, V., Madureira, A. R., Fonte, P., Sarmento, B., Gomes, A. M., & Pintado, M. E. (2015). Evaluation of the interactions between rosmarinic acid and bovine milk casein. RSC Advances, 5(107), 88529–88538. https://doi.org/10.1039/C5RA11973A
  • Greenwald, P. (2004). Clinical trials in cancer prevention: Current results and perspectives for the future. The Journal of Nutrition, 134(12 Suppl), 3507S–3512S. https://doi.org/10.1093/jn/134.12.3507S
  • Guo, Y., Qin, P., Wang, C., Pan, X., Dong, X., & Zong, W. (2020). Characterization on the toxic mechanism of two fluoroquinolones to trypsin by spectroscopic and computational methods. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 55(3), 230–238. https://doi.org/10.1080/03601234.2019.1685317
  • Hashemi-Shahraki, F., Shareghi, B., & Farhadian, S. (2020). The interaction of Naphthol Yellow S (NYS) with pepsin: Insights from spectroscopic to molecular dynamics studies. International Journal of Biological Macromolecules, 165(Pt B), 1842–1851. https://doi.org/10.1016/j.ijbiomac.2020.10.093
  • Hashemi-Shahraki, F., Shareghi, B., & Farhadian, S. (2021). Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. Journal of Molecular Liquids, 341, 117317. https://doi.org/10.1016/j.molliq.2021.117317
  • Hu, Y.-J., Liu, Y., Zhao, R.-M., Dong, J.-X., & Qu, S.-S. (2006). Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 179(3), 324–329. https://doi.org/10.1016/j.jphotochem.2005.08.037
  • Kou, S.-B., Lin, Z.-Y., Wang, B.-L., Shi, J.-H., & Liu, Y.-X. (2021). Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure, 1224, 129024. https://doi.org/10.1016/j.molstruc.2020.129024
  • Koutsopoulos, S., Patzsch, K., Bosker, W. T., & Norde, W. (2007). Adsorption of trypsin on hydrophilic and hydrophobic surfaces. Langmuir: The ACS Journal of Surfaces and Colloids, 23(4), 2000–2006. https://doi.org/10.1021/la062238s
  • Lakowicz, J. R. (2013). Principles of fluorescence spectroscopy. Springer Science & Business Media.
  • Laxmi, D., & Priyadarshy, S. (2002). HyperChem 6.03. Biotech Software & Internet Report, 3(1), 5–9. https://doi.org/10.1089/152791602317250351
  • Li, H., Pu, J., Wang, Y., Liu, C., Yu, J., Li, T., & Wang, R. (2013). Comparative study of the binding of Trypsin with bifendate and analogs by spectrofluorimetry. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 115, 1–11. https://doi.org/10.1016/j.saa.2013.06.025
  • Liu, B., Xiao, H., Li, J., Geng, S., Ma, H., & Liang, G. (2017). Interaction of phenolic acids with trypsin: Experimental and molecular modeling studies. Food Chemistry, 228, 1–6. https://doi.org/10.1016/j.foodchem.2017.01.126
  • Magnani, C., Isaac, V. L. B., Correa, M. A., & Salgado, H. R. N. (2014). Caffeic acid: A review of its potential use in medications and cosmetics. Analytical Methods, 6(10), 3203–3210. https://doi.org/10.1039/C3AY41807C
  • Meng, Y., Jiao, Y., Zhang, Y., Li, Y., Gao, Y., Lu, W., Liu, Y., Shuang, S., & Dong, C. (2020). Multi-sensing function integrated nitrogen-doped fluorescent carbon dots as the platform toward multi-mode detection and bioimaging. Talanta, 210, 120653. https://doi.org/10.1016/j.talanta.2019.120653
  • Millan, S., Satish, L., Bera, K., Susrisweta, B., Singh, D. V., & Sahoo, H. (2017). A spectroscopic and molecular simulation approach toward the binding affinity between lysozyme and phenazinium dyes: An effect on protein conformation. The Journal of Physical Chemistry. B, 121(7), 1475–1484. https://doi.org/10.1021/acs.jpcb.6b10991
  • Mohammadi, M., Shareghi, B., Akbar Saboury, A., & Farhadian, S. (2020). Spermine as a possible endogenous allosteric activator of carboxypeptidase A: Multispectroscopic and molecular simulation studies. Journal of Biomolecular Structure & Dynamics, 38(1), 101–113. https://doi.org/10.1080/07391102.2019.1567387
  • Momeni, L., Shareghi, B., Farhadian, S., & Raisi, F. (2019). Making bovine trypsin more stable and active by erythritol: A multispectroscopic analysis, docking and computational simulation methods. Journal of Molecular Liquids, 292, 111389. https://doi.org/10.1016/j.molliq.2019.111389
  • Momeni, L., Shareghi, B., Saboury, A. A., Farhadian, S., & Reisi, F. (2017). A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin. International Journal of Biological Macromolecules, 94(Pt A), 145–153. https://doi.org/10.1016/j.ijbiomac.2016.10.009
  • Olthof, M. R., Hollman, P. C., & Katan, M. B. (2001). Chlorogenic acid and caffeic acid are absorbed in humans. The Journal of Nutrition, 131(1), 66–71. https://doi.org/10.1093/jn/131.1.66
  • Oobatake, M., & Ooi, T. (1993). Hydration and heat stability effects on protein unfolding. Progress in Biophysics and Molecular Biology, 59(3), 237–284. https://doi.org/10.1016/0079-6107(93)90002-2
  • Polgár, L. (2005). The catalytic triad of serine peptidases. Cellular and Molecular Life Sciences : CMLS, 62(19-20), 2161–2172. https://doi.org/10.1007/s00018-005-5160-x
  • Raeessi-Babaheydari, E., Farhadian, S., & Shareghi, B. (2021). Evaluation of interaction between citrus flavonoid, naringenin, and pepsin using spectroscopic analysis and docking simulation. Journal of Molecular Liquids, 339, 116763. https://doi.org/10.1016/j.molliq.2021.116763
  • Rohn, S., Rawel, H. M., & Kroll, J. (2002). Inhibitory effects of plant phenols on the activity of selected enzymes. Journal of Agricultural and Food Chemistry, 50(12), 3566–3571. https://doi.org/10.1021/jf011714b
  • Sadeghi-Kaji, S., Shareghi, B., Saboury, A. A., & Farhadian, S. (2020). Investigating the interaction of porcine pancreatic elastase and propanol: A spectroscopy and molecular simulation study. International Journal of Biological Macromolecules, 146, 687–691. https://doi.org/10.1016/j.ijbiomac.2019.12.119
  • Sahebi, U., Gholami, H., Ghalandari, B., Badalkhani-Khamseh, F., Nikzamir, A., & Divsalar, A. (2021). Evaluation of BLG ability for binding to 5-FU and Irinotecan simultaneously under acidic condition: A spectroscopic, molecular docking and molecular dynamic simulation study. Journal of Molecular Liquids, 344, 117758. https://doi.org/10.1016/j.molliq.2021.117758
  • Sevgi, K., Tepe, B., & Sarikurkcu, C. (2015). Antioxidant and DNA damage protection potentials of selected phenolic acids. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 77, 12–21. https://doi.org/10.1016/j.fct.2014.12.006
  • Shahwar, D., Raza, M. A., Shafiq-Ur-Rehman, Abbasi, M. A., & Atta-Ur-Rahman. (2012). An investigation of phenolic compounds from plant sources as trypsin inhibitors. Natural Product Research, 26(12), 1087–1093. https://doi.org/10.1080/14786419.2011.559637
  • Soreide, K., Janssen, E., Körner, H., & Baak, J. (2006). Trypsin in colorectal cancer: Molecular biological mechanisms of proliferation, invasion, and metastasis. The Journal of Pathology, 209(2), 147–156. https://doi.org/10.1002/path.1999
  • Sudha, N., & Enoch, I. V. (2015). Binding modes of cabergoline to bovine serum albumin in free-and β-cyclodextrin-encapsulated forms: Differences in quenching behavior and Förster resonance energy transfer. Journal of Solution Chemistry, 44(7), 1367–1381. https://doi.org/10.1007/s10953-015-0355-8
  • Sun, L., Chen, W., Meng, Y., Yang, X., Yuan, L., Guo, Y., Warren, F. J., & Gidley, M. J. (2016). Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chemistry, 208, 51–60. https://doi.org/10.1016/j.foodchem.2016.03.093
  • Transue, T. R., Krahn, J. M., Gabel, S. A., DeRose, E. F., & London, R. E. (2004). X-ray and NMR characterization of covalent complexes of trypsin, borate, and alcohols. Biochemistry, 43(10), 2829–2839. https://doi.org/10.1021/bi035782y
  • Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21(12), 1049–1074. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  • Wang, J., Liu, R., & Qin, P. (2012). Toxic interaction between acid yellow 23 and trypsin: Spectroscopic methods coupled with molecular docking. Journal of Biochemical and Molecular Toxicology, 26(9), 360–367. https://doi.org/10.1002/jbt.21430
  • Wang, B.-L., Pan, D.-Q., Kou, S.-B., Lin, Z.-Y., & Shi, J.-H. (2020). Exploring the binding interaction between bovine serum albumin and perindopril as well as influence of metal ions using multi-spectroscopic, molecular docking and DFT calculation. Chemical Physics, 530, 110641. https://doi.org/10.1016/j.chemphys.2019.110641
  • Wu, X., He, W., Yao, L., Zhang, H., Liu, Z., Wang, W., Ye, Y., & Cao, J. (2013). Characterization of binding interactions of (−)-epigallocatechin-3-gallate from green tea and lipase. Journal of Agricultural and Food Chemistry, 61(37), 8829–8835. https://doi.org/10.1021/jf401779z
  • Xi, J., & Guo, R. (2007). Interactions between flavonoids and hemoglobin in lecithin liposomes. International Journal of Biological Macromolecules, 40(4), 305–311. https://doi.org/10.1016/j.ijbiomac.2006.08.011
  • Yadollahi, E., Shareghi, B., & Farhadian, S. (2022a). Insight of the interaction of Naphthol yellow S with trypsin: Experimental and computational techniques. Journal of the Iranian Chemical Society, 19(7), 2871–2882. https://doi.org/10.1007/s13738-022-02497-9
  • Yadollahi, E., Shareghi, B., & Farhadian, S. (2022b). Noncovalent interactions between Quinoline yellow and trypsin: In vitro and in silico methods. Journal of Molecular Liquids, 353, 118826. https://doi.org/10.1016/j.molliq.2022.118826
  • Ying, M., Huang, F., Ye, H., Xu, H., Shen, L., Huan, T., Huang, S., Xie, J., Tian, S., Hu, Z., He, Z., Lu, J., & Zhou, K. (2015). Study on interaction between curcumin and pepsin by spectroscopic and docking methods. International Journal of Biological Macromolecules, 79, 201–208. https://doi.org/10.1016/j.ijbiomac.2015.04.057
  • Zhang, X., Lu, Y., Zhao, R., Wang, C., Wang, C., & Zhang, T. (2022). Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocolloids, 124, 107331. https://doi.org/10.1016/j.foodhyd.2021.107331
  • Zhang, L., Wang, P., Yang, Z., Du, F., Li, Z., Wu, C., Fang, A., Xu, X., & Zhou, G. (2020). Molecular dynamics simulation exploration of the interaction between curcumin and myosin combined with the results of spectroscopy techniques. Food Hydrocolloids, 101, 105455. https://doi.org/10.1016/j.foodhyd.2019.105455
  • Zhang, Y.-F., Zhou, K.-L., Lou, Y.-Y., Pan, D-q., & Shi, J.-H. (2017). Investigation of the binding interaction between estazolam and bovine serum albumin: Multi-spectroscopic methods and molecular docking technique. Journal of Biomolecular Structure & Dynamics, 35(16), 3605–3614. https://doi.org/10.1080/07391102.2016.1264889

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.