140
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the binding pattern of NIK inhibitors by computational simulation

ORCID Icon
Pages 3318-3331 | Received 29 Oct 2022, Accepted 04 May 2023, Published online: 15 May 2023

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294
  • Arter, C., Trask, L., Ward, S., Yeoh, S., & Bayliss, R. (2022). Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. The Journal of Biological Chemistry, 298(8), 102247–102247. https://doi.org/10.1016/j.jbc.2022.102247
  • Bauer, P., Hess, B., & Lindahl, E. (2022). GROMACS 2022.2 Manual (2022.2). Zenodo. https://doi.org/10.5281/zenodo.6637572
  • Blaquiere, N., Castanedo, G. M., Burch, J. D., Berezhkovskiy, L. M., Brightbill, H., Brown, S., Chan, C., Chiang, P.-C., Crawford, J. J., Dong, T., Fan, P., Feng, J., Ghilardi, N., Godemann, R., Gogol, E., Grabbe, A., Hole, A. J., Hu, B., Hymowitz, S. G., … Staben, S. T. (2018). Scaffold-Hopping Approach To Discover Potent, Selective, and Efficacious Inhibitors of NF-kappaB Inducing Kinase. Journal of Medicinal Chemistry, 61(15), 6801–6813. https://doi.org/10.1021/acs.jmedchem.8b00678
  • Cartwright, T., Perkins, N. D., & L. Wilson, C. (2016). NFKB1: A suppressor of inflammation, ageing and cancer. The FEBS Journal, 283(10), 1812–1822. https://doi.org/10.1111/febs.13627
  • Castanedo, G. M., Blaquiere, N., Beresini, M., Bravo, B., Brightbill, H., Chen, J., Cui, H.-F., Eigenbrot, C., Everett, C., Feng, J., Godemann, R., Gogol, E., Hymowitz, S., Johnson, A., Kayagaki, N., Kohli, P. B., Knüppel, K., Kraemer, J., Krüger, S., … Staben, S. T. (2017). Structure-Based Design of Tricyclic NF-kappaB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K). Journal of Medicinal Chemistry, 60(2), 627–640. https://doi.org/10.1021/acs.jmedchem.6b01363
  • Cheng, J., Feng, X., Li, Z., Zhou, F., Yang, J.-M., & Zhao, Y. (2021). Pharmacological inhibition of NF-kappaB-inducing kinase (NIK) with small molecules for the treatment of human diseases. RSC Medicinal Chemistry, 12(4), 552–565. https://doi.org/10.1039/d0md00361a
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science : A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • de Leon-Boenig, G., et al. (2012). The crystal structure of the catalytic domain of the NF-kappaB inducing kinase reveals a narrow but flexible active site. Structure, 20(10), 1704–1714.
  • Fu, J., Qu, Z., Yan, P., Ishikawa, C., Aqeilan, R. I., Rabson, A. B., & Xiao, G. (2011). The tumor suppressor gene WWOX links the canonical and noncanonical NF-kappaB pathways in HTLV-I Tax-mediated tumorigenesis. Blood, 117(5), 1652–1661. https://doi.org/10.1182/blood-2010-08-303073
  • Ilchovska, D. D., & Barrow, D. M. (2021). An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL. Autoimmunity Reviews, 20(2), 102741. https://doi.org/10.1016/j.autrev.2020.102741
  • Jiang, T., Tian, F., Zheng, H., Whitman, S. A., Lin, Y., Zhang, Z., Zhang, N., & Zhang, D. D. (2014). Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response. Kidney International, 85(2), 333–343. https://doi.org/10.1038/ki.2013.343
  • Jimi, E., Fei, H., & Nakatomi, C. (2019). NF-kappaB Signaling Regulates Physiological and Pathological Chondrogenesis. International Journal of Molecular Sciences, 20(24), 6275.
  • Li, K., McGee, L. R., Fisher, B., Sudom, A., Liu, J., Rubenstein, S. M., Anwer, M. K., Cushing, T. D., Shin, Y., Ayres, M., Lee, F., Eksterowicz, J., Faulder, P., Waszkowycz, B., Plotnikova, O., Farrelly, E., Xiao, S.-H., Chen, G., & Wang, Z. (2013). Inhibiting NF-kappaB-inducing kinase (NIK): discovery, structure-based design, synthesis, structure-activity relationship, and co. Bioorganic & Medicinal Chemistry Letters, 23(5), 1238–1244. https://doi.org/10.1016/j.bmcl.2013.01.012
  • Li, Zhiqiang, Li, Xinzhi, Su, Ming-Bo, Gao, Li-Xin, Zhou, Yu-Bo, Yuan, Bingchuan, Lyu, Xilin, Yan, Ziqin, Hu, Chujiao, Zhang, Hao, Luo, Cheng, Chen, Zheng, Li, Jia, Zhao, Yujun,., Discovery of a Potent and Selective NF-kappaB-Inducing Kinase (NIK) Inhibitor That Has Anti-inflammatory Effects in Vitro and in Vivo.Journal of Medicinal Chemistry, 2020. 63(8): P. 4388–4407. Med Chem, 2020. 63(8): P. 4388–4407. https://doi.org/10.1021/acs.jmedchem.0c00396
  • Liu, A., Zhang, B., Zhao, W., Tu, Y., Wang, Q., & Li, J. (2021). Catalpol ameliorates psoriasis-like phenotypes via SIRT1 mediated suppression of NF-kappaB and MAPKs signaling pathways. Bioengineered, 12(1), 183–195. https://doi.org/10.1080/21655979.2020.1863015
  • Lu, T. Sobtop, Version 1.0(dev3.1), http://sobereva.com/soft/Sobtop (accessed on 2 10 2022).
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Malinin, N. L., Boldin, M. P., Kovalenko, A. V., & Wallach, D. (1997). MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature, 385(6616), 540–544. https://doi.org/10.1038/385540a0
  • Modi, V., & Dunbrack, R. J. (2019). Defining a new nomenclature for the structures of active and inactive kinases. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6818–6827. https://doi.org/10.1073/pnas.1814279116
  • Modi, V., & Dunbrack, R. L. (2022). Kincore: A web resource for structural classification of protein kinases and their inhibitors. Nucleic Acids Research, 50(D1), D654–D664. https://doi.org/10.1093/nar/gkab920
  • Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry program package. The Journal of Chemical Physics, 152(22), 224108. https://doi.org/10.1063/5.0004608
  • Pflug, K. M., & Sitcheran, R. (2020). Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. International Journal of Molecular Sciences, 21(22), 8470. https://doi.org/10.3390/ijms21228470
  • Pippione, A. C., Sainas, S., Federico, A., Lupino, E., Piccinini, M., Kubbutat, M., Contreras, J.-M., Morice, C., Barge, A., Ducime, A., Boschi, D., Al-Karadaghi, S., & Lolli, M. L. (2018). N-Acetyl-3-aminopyrazoles block the non-canonical NF-kB cascade by selectively inhibiting NIK. medchemcomm, 9(6), 963–968. https://doi.org/10.1039/c8md00068a
  • Roskoski, R. J. (2015). A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacological Research, 100, 1–23. https://doi.org/10.1016/j.phrs.2015.07.010
  • Roskoski, R. J. (2016). Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacological Research, 103, 26–48. https://doi.org/10.1016/j.phrs.2015.10.021
  • Schauperl, M., Nerenberg, P. S., Jang, H., Wang, L.-P., Bayly, C. I., Mobley, D. L., & Gilson, M. K. (2020). Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2). Communications Chemistry, 3(1), 44. https://doi.org/10.1038/s42004-020-0291-4
  • Sun, S. C. (2011). Non-canonical NF-kappaB signaling pathway. Cell Research, 21(1), 71–85. https://doi.org/10.1038/cr.2010.177
  • Sun, S. C., & Ley, S. C. (2008). New insights into NF-kappaB regulation and function. Trends in Immunology, 29(10), 469–478. https://doi.org/10.1016/j.it.2008.07.003
  • Tan, S., Liu, X., Chen, L., Wu, X., Tao, L., Pan, X., Tan, S., Liu, H., Jiang, J., & Wu, B. (2021). Fas/FasL mediates NF-kappaBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death & Disease, 12(5), 474. https://doi.org/10.1038/s41419-021-03749-x
  • Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1), W98–W102. https://doi.org/10.1093/nar/gkx247
  • UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Research. 51(D1): P), D523–D531.
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vijayan, R. S. K., He, P., Modi, V., Duong-Ly, K. C., Ma, H., Peterson, J. R., Dunbrack, R. L., & Levy, R. M. (2015). Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. Journal of Medicinal Chemistry, 58(1), 466–479. https://doi.org/10.1021/jm501603h
  • Wang, H., Gao, Z., Song, P., Hu, B., Wang, J., & Cheng, M. (2019). Molecular dynamics simulation and QM/MM calculation reveal the selectivity mechanism of type I 1/2 kinase inhibitors: The effect of intramolecular H-bonds and conformational restriction for improved selectivity. Physical Chemistry Chemical Physics : PCCP, 21(43), 24147–24164. https://doi.org/10.1039/c9cp04353e
  • Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S., & Hou, T. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics : PCCP, 18(18), 12964–12975. https://doi.org/10.1039/c6cp01555g
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–10. https://doi.org/10.1093/nar/gkm290
  • Xiong, Y., Torsoni, A. S., Wu, F., Shen, H., Liu, Y., Zhong, X., Canet, M. J., Shah, Y. M., Omary, M. B., Liu, Y., & Rui, L. (2018). Hepatic NF-kB-inducing kinase (NIK) suppresses mouse liver regeneration in acute and chronic liver diseases. eLife, 7, e34152. https://doi.org/10.7554/eLife.34152
  • Yao, Y., Li, F., Zhang, M., Jin, L., Xie, P., Liu, D., Zhang, J., Hu, X., Lv, F., Shang, H., Zheng, W., Sun, X., Duanmu, J., Wu, F., Lan, F., Xiao, R.-P., & Zhang, Y. (2022). Targeting CaMKII-delta9 Ameliorates Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Inflammation. Circulation Research, 130(6), 887–903. https://doi.org/10.1161/CIRCRESAHA.121.319478
  • Zhang, N., & Zhao, H. (2016). Enriching screening libraries with bioactive fragment space. Bioorganic & Medicinal Chemistry Letters, 26(15), 3594–3597. https://doi.org/10.1016/j.bmcl.2016.06.013
  • Zhang, Z., Zhong, X., Shen, H., Sheng, L., Liangpunsakul, S., Lok, A. S., Omary, M. B., Wang, S., & Rui, L. (2022). Biliary NIK promotes ductular reaction and liver injury and fibrosis in mice. Nature Communications, 13(1), 5111. https://doi.org/10.1038/s41467-022-32575-8
  • Zhu, Y., Ma, Y., Zu, W., Song, J., Wang, H., Zhong, Y., Li, H., Zhang, Y., Gao, Q., Kong, B., Xu, J., Jiang, F., Wang, X., Li, S., Liu, C., Liu, H., Lu, T., & Chen, Y. (2020). Identification of N-Phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine Derivatives as Novel, Potent, and Selective NF-kappaB Inducing Kinase (NIK) Inhibitors for the Treatment of Psoriasis. Kinase (NIK) Inhibitors for the Treatment of Psoriasis. Journal of Medicinal Chemistry, 63(13), 6748–6773. https://doi.org/10.1021/acs.jmedchem.0c00055
  • Zusso, M., Lunardi, V., Franceschini, D., Pagetta, A., Lo, R., Stifani, S., Frigo, A. C., Giusti, P., & Moro, S. (2019). Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. Journal of Neuroinflammation, 16(1), 148. https://doi.org/10.1186/s12974-019-1538-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.