188
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Discovering phenoxy acetohydrazide derivatives as urease inhibitors and molecular docking studies

, , , , , , , , & show all
Pages 3118-3127 | Received 25 Jan 2023, Accepted 01 May 2023, Published online: 22 May 2023

References

  • Alrasheid, A. A., Babiker, M. Y., & Awad, T. A. (2021). Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacology, 9(1), 7. https://doi.org/10.1007/s40203-020-00073-8
  • Amtul, Z., Rahman, A.-U., Siddiqui, R. A., & Choudhary, M. I. (2002). Chemistry and mechanism of urease inhibition. Current Medicinal Chemistry, 9(14), 1323–1348. https://doi.org/10.2174/0929867023369853
  • Anwar, S., Khan, M. A., Ahmed, I., Pervaiz, I., & Shah, H. S. (2020). Development of Schiff bases from amikacin: Synthesis, antibacterial, anti-urease activities and molecular docking studies. Letters in Drug Design & Discovery, 17(12), 1579–1588. https://doi.org/10.2174/1570180817999200921112605
  • Aslam, M. A. S., Mahmood, S-u., Shahid, M., Saeed, A., & Iqbal, J. (2011). Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. European Journal of Medicinal Chemistry, 46(11), 5473–5479. https://doi.org/10.1016/j.ejmech.2011.09.009
  • Biglar, M., Soltani, K., Nabati, F., Bazl, R., Mojab, F., & Amanlou, M. (2012). A preliminary investigation of the Jack-Bean urease inhibition by randomly selected traditionally used herbal medicine. Iranian Journal of Pharmaceutical Research: IJPR, 11(3), 831.
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
  • Cebeci, Y. U., Bayrak, H., & Şirin, Y. (2019). Synthesis of novel Schiff bases and azol-β-lactam derivatives starting from morpholine and thiomorpholine and investigation of their antitubercular, antiurease activity, acethylcolinesterase inhibition effect and antioxidant capacity. Bioorganic Chemistry, 88, 102928. https://doi.org/10.1016/j.bioorg.2019.102928
  • Chemchem, M., Menacer, R., Merabet, N., Bouridane, H., Yahiaoui, S., Moussaoui, S., & Belkhiri, L. (2020). Green synthesis, antibacterial evaluation and QSAR analysis of some isatin Schiff bases. Journal of Molecular Structure, 1208, 127853. https://doi.org/10.1016/j.molstruc.2020.127853
  • Clinton, S. K., Giovannucci, E. L., & Hursting, S. D. (2020). The world cancer research fund/American institute for cancer research third expert report on diet, nutrition, physical activity, and cancer: Impact and future directions. The Journal of Nutrition, 150(4), 663–671. https://doi.org/10.1093/jn/nxz268
  • Confederat, L. G., Tuchilus, C. G., Dragan, M., Sha’at, M., & Dragostin, O. M. (2021). Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules, 26(12), 3694. https://doi.org/10.3390/molecules26123694
  • de Fátima, Â., de Paula Pereira, C., Olímpio, C., de Freitas Oliveira, B. G., Franco, L. L., & da Silva, P. H. C. (2018). Schiff bases and their metal complexes as urease inhibitors – A brief review. Journal of Advanced Research, 13, 113–126. https://doi.org/10.1016/j.jare.2018.03.007
  • Eaton, K. A., Brooks, C., Morgan, D., & Krakowka, S. (1991). Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infection and Immunity, 59(7), 2470–2475. https://doi.org/10.1128/iai.59.7.2470-2475.1991
  • Erturk, A. G. (2020). Synthesis, structural identifications of bioactive two novel Schiff bases. Journal of Molecular Structure, 1202, 127299. https://doi.org/10.1016/j.molstruc.2019.127299
  • Hassan, A. S., Askar, A. A., Nossier, E. S., Naglah, A. M., Moustafa, G. O., & Al-Omar, M. A. (2019). Antibacterial evaluation, in silico characters and molecular docking of Schiff bases derived from 5-aminopyrazoles. Molecules, 24(17), 3130. https://doi.org/10.3390/molecules24173130
  • Karita, M., Tsuda, M., & Nakazawa, T. (1995). Essential role of urease in vitro and in vivo Helicobacter pylori colonization study using a wild-type and isogenic urease mutant strain. Journal of Clinical Gastroenterology, 21, S160–S163.
  • Li, W.-Y., Ni, W.-W., Ye, Y.-X., Fang, H.-L., Pan, X.-M., He, J.-L., Zhou, T.-L., Yi, J., Liu, S.-S., Zhou, M., Xiao, Z.-P., & Zhu, H.-L. (2020). N-monoarylacetothioureas as potent urease inhibitors: Synthesis, SAR, and biological evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 404–413. https://doi.org/10.1080/14756366.2019.1706503
  • Lu, H., Qi, Y., Zhao, Y., & Jin, N. (2020). Effects of hydroxyl group on the interaction of carboxylated flavonoid derivatives with S. cerevisiae α-glucosidase. Current Computer-Aided Drug Design, 16(1), 31–44. https://doi.org/10.2174/1573409914666181022142553
  • Macomber, L., Minkara, M. S., Hausinger, R. P., & Merz, K. M. Jr. (2015). Reduction of urease activity by interaction with the flap covering the active site. Journal of Chemical Information and Modeling, 55(2), 354–361. https://doi.org/10.1021/ci500562t
  • McCarty, G., Bremner, J., & Lee, J. (1990). Inhibition of plant and microbial ureases by phosphoroamides. Plant and Soil, 127(2), 269–283. https://doi.org/10.1007/BF00014435
  • Menteşe, E., Bektaş, H., Sokmen, B. B., Emirik, M., Çakır, D., & Kahveci, B. (2017). Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1H-benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease. Bioorganic & Medicinal Chemistry Letters, 27(13), 3014–3018. https://doi.org/10.1016/j.bmcl.2017.05.019
  • Mermer, A., Demirbas, N., Uslu, H., Demirbas, A., Ceylan, S., & Sirin, Y. (2019). Synthesis of novel Schiff bases using green chemistry techniques: Antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. Journal of Molecular Structure, 1181, 412–422. https://doi.org/10.1016/j.molstruc.2018.12.114
  • Minkara, M. S., Weaver, M. N., & Merz, K. M. Jr. (2015). Effect of 10.5 M aqueous urea on Helicobacter pylori urease: A molecular dynamics study. Biochemistry, 54(26), 4121–4130. https://doi.org/10.1021/acs.biochem.5b00078
  • Plummer, M., Franceschi, S., Vignat, J., Forman, D., & de Martel, C. (2015). Global burden of gastric cancer attributable to Helicobacter pylori. International Journal of Cancer, 136(2), 487–490. https://doi.org/10.1002/ijc.28999
  • Rahim, F., Ali, M., Ullah, S., Rashid, U., Ullah, H., Taha, M., Javed, M. T., Rehman, W., Khan, A. A., Abid, O. U. R., & Bilal, M. (2016). Development of bis-thiobarbiturates as successful urease inhibitors and their molecular modeling studies. Chinese Chemical Letters, 27(5), 693–697. https://doi.org/10.1016/j.cclet.2015.12.035
  • Rahim, F., Javed, M. T., Ullah, H., Wadood, A., Taha, M., Ashraf, M., Khan, M. A., Khan, F., Mirza, S., Khan, K. M., & Qurat-Ul-Ain. (2015a). Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorganic Chemistry, 62, 106–116. https://doi.org/10.1016/j.bioorg.2015.08.002
  • Rahim, F., Ullah, H., Javid, M. T., Wadood, A., Taha, M., Ashraf, M., Shaukat, A., Junaid, M., Hussain, S., Rehman, W., Mehmood, R., Sajid, M., Khan, M. N., & Khan, K. M. (2015b). Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorganic Chemistry, 62, 15–21. https://doi.org/10.1016/j.bioorg.2015.06.006
  • Rahim, F., Ullah, K., Ullah, H., Wadood, A., Taha, M., Ur Rehman, A., Uddin, I., Ashraf, M., Shaukat, A., Rehman, W., Hussain, S., & Khan, K. M. (2015c). Triazinoindole analogs as potent inhibitors of α-glucosidase: Synthesis, biological evaluation and molecular docking studies. Bioorganic Chemistry, 58, 81–87. https://doi.org/10.1016/j.bioorg.2014.12.001
  • Saboury, A., & Moosavi-Movahedi, A. (1997). A simple novel method for studying the combined inhibitory effects of ethylurea and N,N-dimethylurea on jack bean urease. Journal of Enzyme Inhibition, 11(3), 217–222. https://doi.org/10.3109/14756369709027652
  • Saeed, A., Imran, A., Channar, P. A., Shahid, M., Mahmood, W., & Iqbal, J. (2015). 2‐(Hetero (aryl) methylene) hydrazine‐1‐carbothioamides as potent urease Inhibitors. Chemical Biology & Drug Design, 85(2), 225–230. https://doi.org/10.1111/cbdd.12379
  • Taha, M., Javid, M. T., Imran, S., Selvaraj, M., Chigurupati, S., Ullah, H., Rahim, F., Khan, F., Mohammad, J. I., & Khan, K. M. (2017). Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorganic Chemistry, 74, 179–186. https://doi.org/10.1016/j.bioorg.2017.08.003
  • Taha, M., Sultan, S., Nuzar, H. A., Rahim, F., Imran, S., Ismail, N. H., Naz, H., & Ullah, H. (2016). Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent β-glucuronidase inhibitors. Bioorganic & Medicinal Chemistry, 24(16), 3696–3704. https://doi.org/10.1016/j.bmc.2016.06.008
  • Taha, M., Ullah, H., Al Muqarrabun, L. M. R., Khan, M. N., Rahim, F., Ahmat, N., Ali, M., & Perveen, S. (2018). Synthesis of bis-indolylmethanes as new potential inhibitors of β-glucuronidase and their molecular docking studies. European Journal of Medicinal Chemistry, 143, 1757–1767. https://doi.org/10.1016/j.ejmech.2017.10.071
  • Todd, M. J., & Hausinger, R. (1989). Competitive inhibitors of Klebsiella aerogenes urease: Mechanisms of interaction with the nickel active site. The Journal of Biological Chemistry, 264(27), 15835–15842. https://doi.org/10.1016/S0021-9258(18)71553-6
  • Uddin, I., Taha, M., Rahim, F., & Wadood, A. (2018). Synthesis and molecular docking study of piperazine derivatives as potent inhibitor of thymidine phosphorylase. Bioorganic Chemistry, 78, 324–331. https://doi.org/10.1016/j.bioorg.2018.03.026
  • Ullah, H., Ullah, H., Taha, M., Khan, F., Rahim, F., Uddin, I., Sarfraz, M., Shah, S. A., Aziz, A., & Mubeen, S. (2021). Synthesis, in vitro α-amylase activity, and molecular docking study of new benzimidazole derivatives. Russian Journal of Organic Chemistry, 57(6), 968–975. https://doi.org/10.1134/S1070428021060130
  • Valenzuela-Valderrama, M., Cerda-Opazo, P., Backert, S., González, M. F., Carrasco-Véliz, N., Jorquera-Cordero, C., Wehinger, S., Canales, J., Bravo, D., & Quest, A. F. (2019). The Helicobacter pylori urease virulence factor is required for the induction of hypoxia-induced factor-1α in gastric cells. Cancers (Basel), 11(6), 799. https://doi.org/10.3390/cancers11060799
  • Wadood, A., Ajmal, A., Junaid, M., Rehman, A. U., Uddin, R., Azam, S. S., Khan, A. Z., & Ali, A. (2022). Machine learning-based virtual screening for STAT3 anticancer drug target. Current Pharmaceutical Design, 28(36), 3023–3032. https://doi.org/10.2174/1381612828666220728120523
  • Weatherburn, M. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39(8), 971–974. https://doi.org/10.1021/ac60252a045
  • Yuan, S., Chan, H. S., & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(2), e1298.
  • Zaman, K., Rahim, F., Taha, M., Ullah, H., Wadood, A., Nawaz, M., Khan, F., Wahab, Z., Shah, S. A. A., Rehman, A. U., Kawde, A.-N., & Gollapalli, M. (2019). Synthesis, in vitro urease inhibitory potential and molecular docking study of benzimidazole analogues. Bioorganic Chemistry, 89, 103024. https://doi.org/10.1016/j.bioorg.2019.103024
  • Zaman, K., Rahim, F., Taha, M., Wadood, A., Shah, S. A. A., Ahmed, Q. U., & Zakaria, Z. A. (2019). Synthesis of new isoquinoline-base-oxadiazole derivatives as potent inhibitors of thymidine phosphorylase and molecular docking study. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-52100-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.