309
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A computational study to probe the binding aspects of potent polyphenolic inhibitors of pancreatic lipase

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3472-3491 | Received 19 Oct 2022, Accepted 07 May 2023, Published online: 18 May 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adisakwattana, S., Intrawangso, J., Hemrid, A., Chanathong, B., & Mäkynen, K. (2012). Extracts of edible plants inhibit pancreatic lipase, cholesterol esterase and cholesterol micellization, and bind bile acids. Food Technology and Biotechnology, 50(1), 11–16.
  • Ahn, J. H., Liu, Q., Lee, C., Ahn, M. J., Yoo, H. S., Hwang, B. Y., & Lee, M. K. (2012). A new pancreatic lipase inhibitor from Broussonetia kanzinoki. Bioorganic & Medicinal Chemistry Letters, 22(8), 2760–2763. https://doi.org/10.1016/j.bmcl.2012.02.088
  • Balaji, M., Ganjayi, M. S., Kumar, G. E. H., Parim, B. N., Mopuri, R., & Dasari, S. (2016). A review on possible therapeutic targets to contain obesity: The role of phytochemicals. Obesity Research & Clinical Practice, 10(4), 363–380. https://doi.org/10.1016/j.orcp.2015.12.004
  • Barducci, A., Bussi, G., & Parrinello, M. (2008). Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Physical Review Letters, 100(2), 020603. https://doi.org/10.1103/PhysRevLett.100.020603
  • Bello, M., Basilio-Antonio, L., Fragoso-Vázquez, J., Avalos-Soriano, A., & Correa-Basurto, J. (2017). Molecular recognition between pancreatic lipase and natural and synthetic inhibitors. International Journal of Biological Macromolecules, 98, 855–868. https://doi.org/10.1016/j.ijbiomac.2017.01.150
  • Bessesen, D. H., & Van Gaal, L. F. (2018). Progress and challenges in anti-obesity pharmacotherapy. The Lancet Diabetes & Endocrinology, 6(3), 237–248. https://doi.org/10.1016/S2213-8587(17)30236-X
  • Birari, R. B., & Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discovery Today. 12(19-20), 879–889. https://doi.org/10.1016/j.drudis.2007.07.024
  • Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A., & Parrinello, M. (2009). PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications, 180(10), 1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011
  • Borgström, B. (1988). Mode of action of tetrahydrolipstatin: A derivative of the naturally occurring lipase inhibitor lipstatin. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 962(3), 308–316. https://doi.org/10.1016/0005-2760(88)90260-3
  • Buchholz, T., & Melzig, M. F. (2015). Polyphenolic compounds as pancreatic lipase inhibitors. Planta Medica, 81(10), 771–783. https://doi.org/10.1055/s-0035-1546173
  • Buyukhatipoglu, H. (2008). A possibly overlooked side effect of orlistat: Gastroesophageal reflux disease. Journal of the National Medical Association, 100(10), 1207. https://doi.org/10.1016/S0027-9684(15)31487-5
  • Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., & Tekade, R. K. (2018). Computer-aided prediction of pharmacokinetic (ADMET) properties. In R. K. Tekade (Ed.), Dosage form design parameters (Vol. II, pp. 731–755). Academic Press.
  • Chen, T. Y., Wang, M. M., Hsieh, S. K., Hsieh, M. H., Chen, W. Y., & Tzen, J. T. (2018). Pancreatic lipase inhibition of strictinin isolated from Pu’er tea (Cammelia sinensis) and its anti-obesity effects in C57BL6 mice. Journal of Functional Foods, 48, 1–8. https://doi.org/10.1016/j.jff.2018.06.020
  • de Melo, C. L., Queiroz, M. G. R., Arruda Filho, A. C. V., Rodrigues, A. M., de Sousa, D. F., Almeida, J. G. L., Pessoa, O. D. L., Silveira, E. R., Menezes, D. B., Melo, T. S., Santos, F. A., & Rao, V. S. (2009). Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet. Journal of Agricultural and Food Chemistry, 57(19), 8776–8781. https://doi.org/10.1021/jf900768w
  • Dollinger, L. M., & Howell, A. R. (1998). A 2-methyleneoxetane analog of orlistat demonstrating inhibition of porcine pancreatic lipase. Bioorganic & Medicinal Chemistry Letters, 8(8), 977–978. https://doi.org/10.1016/s0960-894x(98)00140-1
  • Drug-likeness Tools: (DruLiTo). (2021). DruLiTo. http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLito_index.html
  • Ebdrup, S., Sørensen, L. G., Olsen, O. H., & Jacobsen, P. (2004). Synthesis and structure-activity relationship for a novel class of potent and selective carbamoyl-triazole based inhibitors of hormone sensitive lipase. Journal of Medicinal Chemistry, 47(2), 400–410. https://doi.org/10.1021/jm031004s
  • Egloff, M. P., Marguet, F., Buono, G., Verger, R., Cambillau, C., & Van, T. H. (1995). The 2.46. ANG. Resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry, 34(9), 2751–2762. https://doi.org/10.1021/bi00009a003
  • Fernando, W. I. T., Attanayake, A. M. K. C., Perera, H. K. I., Sivakanesan, R., Jayasinghe, L., Araya, H., & Fujimoto, Y. (2019). Isolation, identification and characterization of pancreatic lipase inhibitors from Trigonella foenum-graecum seeds. South African Journal of Botany, 121, 418–421. https://doi.org/10.1016/j.sajb.2018.10.023
  • Franson, K., & Rössner, S. (2000). Fat intake and food choices during weight reduction with diet, behavioral modification and a lipase inhibitor. Journal of Internal Medicine, 247(5), 607–614. https://doi.org/10.1046/j.1365-2796.2000.t01-1-00666.x
  • Fu, C., Jiang, Y., Guo, J., & Su, Z. (2016). Natural products with anti-obesity effects and different mechanisms of action. Journal of Agricultural and Food Chemistry, 64(51), 9571–9585. https://doi.org/10.1021/acs.jafc.6b04468
  • Gao, H. X., Liang, H. Y., Chen, N., Shi, B., & Zeng, W. C. (2022). Potential of phenolic compounds in Ligustrum robustum (Rxob.) Blume as antioxidant and lipase inhibitors: Multi spectroscopic methods and molecular docking. Journal of Food Science, 87(2), 651–663. https://doi.org/10.1111/1750-3841.16020
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Ghosh, B., Roy, S., & Singh, J. K. (2021). The mode of therapeutic action of 2-deoxy D-glucose: Anti-viral or glycolysis blocker? In ChemRxiv. Cambridge Open Engage. https://doi.org/10.26434/chemrxiv-2021-2z6ln
  • Glisan, S. L., Grove, K. A., Yennawar, N. H., & Lambert, J. D. (2017). Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chemistry, 216, 296–300. https://doi.org/10.1016/j.foodchem.2016.08.052
  • GraphPad Software. (2021). Prism. V.9.0.0. https://www.graphpad.com/.
  • Grob, S. (2021). Molinspiration: Cheminformatics free web services. https://www.molinspiration.com/.
  • Ha, M. T., Tran, M. H., Ah, K. J., Jo, K. J., Kim, J., Kim, W. D., Cheon, W. J., Woo, M. H., Ryu, S. H., & Min, B. S. (2016). Potential pancreatic lipase inhibitory activity of phenolic constituents from the root bark of Morus alba L. Bioorganic & Medicinal Chemistry Letters, 26(12), 2788–2794. https://doi.org/10.1016/j.bmcl.2016.04.066
  • Hou, X. D., Ge, G. B., Weng, Z. M., Dai, Z. R., Leng, Y. H., Ding, L. L., Jin, L. L., Yu, Y., Cao, Y. F., & Hou, J. (2018). Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorganic Chemistry, 80, 577–584. https://doi.org/10.1016/j.bioorg.2018.07.011
  • Hou, X.-D., Guan, X.-Q., Cao, Y.-F., Weng, Z.-M., Hu, Q., Liu, H.-B., Jia, S.-N., Zang, S.-Z., Zhou, Q., Yang, L., Ge, G.-B., & Hou, J. (2020). Inhibition of pancreatic lipase by the constituents in St. John’s Wort: In vitro and in silico investigations. International Journal of Biological Macromolecules, 145, 620–633. https://doi.org/10.1016/j.ijbiomac.2019.12.231
  • Indrayanto, G., Putra, G. S., & Suhud, F. (2021). Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles of Drug Substances, Excipients, and Related Methodology, 46, 273–307. https://doi.org/10.1016/bs.podrm.2020.07.005
  • Jain, K. S., Kathiravan, M. K., Somani, R. S., & Shishoo, C. J. (2007). The biology and chemistry of hyperlipidemia. Bioorganic and Bioorganic & Medicinal Chemistry, 15(14), 4674–4699. https://doi.org/10.1016/j.bmc.2007.04.031
  • Jang, D. S., Lee, G. Y., Kim, J., Lee, Y. M., Kim, J. M., Kim, Y. S., & Kim, J. S. (2008). A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Archives of Pharmacal Research, 31(5), 666–670. https://doi.org/10.1007/s12272-001-1210-9
  • Jawed, A., Singh, G., Kohli, S., Sumera, A., Haque, S., Prasad, R., & Paul, D. (2019). Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. South African Journal of Botany, 120, 25–32. https://doi.org/10.1016/j.sajb.2018.04.004
  • Jeong, J. Y., Jo, Y. H., Kim, S. B., Liu, Q., Lee, J. W., Mo, E. J., Lee, K. Y., Hwang, B. Y., & Lee, M. K. (2015). Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorganic & Medicinal Chemistry Letters, 25(11), 2269–2274. https://doi.org/10.1016/j.bmcl.2015.04.045
  • Jo, Y. H., Kim, S. B., Liu, Q., Lee, J. W., Hwang, B. Y., & Lee, M. K. (2015). Benzylated and prenylated flavonoids from the root barks of Cudrania tricuspidata with pancreatic lipase inhibitory activity. Bioorganic and Bioorganic & Medicinal Chemistry Letters, 25(17), 3455–3457. https://doi.org/10.1016/j.bmcl.2015.07.017
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kakkar, A. K., & Dahiya, N. (2015). Drug treatment of obesity: Current status and future prospects. European Journal of Internal Medicine, 26(2), 89–94. https://doi.org/10.1016/j.ejim.2015.01.005
  • Kang, H. S., & Kim, J. P. (2016). Ostalactones A–C, β-and ε-lactones with lipase inhibitory activity from the cultured basidiomycete Stereum ostrea. Journal of Natural Products, 79(12), 3148–3151. https://doi.org/10.1021/acs.jnatprod.6b00647
  • Kato, E., Yama, M., Nakagomi, R., Shibata, T., Hosokawa, K., & Kawabata, J. (2012). Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica. Bioorganic & Medicinal Chemistry Letters, 22(20), 6410–6412. https://doi.org/10.1016/j.bmcl.2012.08.055
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Kim, T. H., Kim, J. K., Ito, H., & Jo, C. (2011). Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorganic & Medicinal Chemistry Letters, 21(5), 1512–1514. https://doi.org/10.1016/j.bmcl.2010.12.122
  • Kumar, A., & Chauhan, S. (2021). Pancreatic lipase inhibitors: The road voyaged and successes. Life Sciences, 271, 119115. https://doi.org/10.1016/j.lfs.2021.119115
  • Kumar, S., & Alagawadi, K. R. (2013). Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharmaceutical Biology, 51(5), 607–613. https://doi.org/10.3109/13880209.2012.757327
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). G_mmpbsa - A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, F., Li, W., Fu, H., Zhang, Q., & Koike, K. (2007). Pancreatic lipase-inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus. Chemical & Pharmaceutical Bulletin, 55(7), 1087–1089. https://doi.org/10.1248/cpb.55.1087
  • Li, Z., & Ji, G. E. (2017). Effects of various ginsenosides and ginseng root and ginseng berry on the activity of Pancreatic lipase. Food Science and Biotechnology, 26(3), 767–773. https://doi.org/10.1007/s10068-017-0090-6
  • Liu, P. K., Weng, Z. M., Ge, G. B., Li, H. L., Ding, L. L., Dai, Z. R., Hou, X. D., Leng, Y. H., Yang, Y., & Hou, J. (2018). Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. International Journal of Biological Macromolecules, 118(Pt B), 2216–2223. https://doi.org/10.1016/j.ijbiomac.2018.07.085
  • Lowe, M. E. (2002). The triglyceride lipases of the pancreas. Journal of Lipid Research, 43(12), 2007–2016. https://doi.org/10.1194/jlr.r200012-jlr200
  • Lunagariya, N. A., Patel, N. K., Jagtap, S. C., & Bhutani, K. K. (2014). Inhibitors of pancreatic lipase: State of the art and clinical perspectives. Experimental and Clinical Sciences, 13, 897–921.
  • MacKerell, Jr, A. D., Banavali, N., & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257–265. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Müller, T. D., Blüher, M., Tschöp, M. H., & DiMarchi, R. D. (2022). Anti-obesity drug discovery: Advances and challenges. Nature Reviews. Drug Discovery, 21(3), 201–223. https://doi.org/10.1038/s41573-021-00337-8
  • Murugesan, S., Kottekad, S., Crasta, I., Sreevathsan, S., Usharani, D., Perumal, M. K., & Mudliar, S. N. (2021). Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants–Emblica officinalis (Amla), Phyllanthus niruri Linn.(Bhumi Amla) and Tinospora cordifolia (Giloy) - A molecular docking and simulation study. Computers in Biology and Medicine, 136, 104683. https://doi.org/10.1016/j.compbiomed.2021.104683
  • Mutoh, M., Nakada, N., Matsukuma, S., Ohshima, S., Yoshinari, K., Watanabe, J., & Arisawa, M. (1994). Panclicins, novel pancreatic lipase inhibitors I. Taxonomy, fermentation, isolation and biological activity. The Journal of Antibiotics, 47(12), 1369–1375. https://doi.org/10.7164/antibiotics.47.1369
  • Nakai, M., Fukui, Y., Asami, S., Toyoda-Ono, Y., Iwashita, T., Shibata, H., Mitsunaga, T., Hashimoto, F., & Kiso, Y. (2005). Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. Journal of Agricultural and Food Chemistry, 53(11), 4593–4598. https://doi.org/10.1021/jf047814+
  • Namsani, S., Pramanik, D., Khan, M. A., Roy, S., & Singh, J. K. (2022). Metadynamics-based enhanced sampling protocol for virtual screening: Case study for 3CLpro protein for SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 40(15), 7002–7017. https://doi.org/10.1080/07391102.2021.1892530
  • Nguyen, H. A., Do, T. N., Truong, V. D., Thai, K. M., Chau, T. N., & Dao, T. T. (2013). Design, synthesis and biological evaluation of some chalcone derivatives as potential pancreatic lipase inhibitors [Paper presentation]. Paper Presented at the 17th International Electronic Conference on Synthetic Organic Chemistry, b021.
  • Padwal, R. S., & Majumdar, S. R. (2007). Drug treatments for obesity: Orlistat, sibutramine, and rimonabant. Lancet (London, England), 369(9555), 71–77. https://doi.org/10.1016/S0140-6736(07)60033-6
  • Paley, C. A., & Johnson, M. I. (2018). Abdominal obesity and metabolic syndrome: Exercise as medicine? BMC Sports Science., Medicine and Rehabilitation, 10(1), 1–8.
  • Panwar, U., & Singh, S. K. (2019). Identification of novel pancreatic lipase inhibitors using in silico studies. Endocrine, Metabolic & Immune Disorders Drug Targets, 19(4), 449–457. https://doi.org/10.2174/1871530319666181128100903
  • Park, C. H., Chung, B. Y., Lee, S. S., Bai, H. W., Cho, J. Y., Jo, C., & Kim, T. H. (2013). Radiolytic transformation of rotenone with potential anti-adipogenic activity. Bioorganic & Medicinal Chemistry Letters, 23(4), 1099–1103. https://doi.org/10.1016/j.bmcl.2012.12.003
  • Patra, S., Nithya, S., Srinithya, B., & Meenakshi, S. M. (2015). Review of medicinal plants for anti-obesity activity. Translational Biomedicine, 6(3), 21. https://doi.org/10.21767/2172-0479.100021
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Prabhakar, L., & Davis, D. J. G. (2022). Computational study of potential inhibitors for fat mass and obesity-associated protein from seaweed and plant compounds. PeerJ, 10, e14256. https://doi.org/10.7717/peerj.14256
  • Prescience Insilico Solutions Suite. (2022). PRinS3. V.2.0. Bangalore, India: Prescience Insilico Private Limited. https://www.prescience.in/prins.
  • Rajan, L., Palaniswamy, D., & Mohankumar, S. K. (2020). Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacological Research, 155, 104681. https://doi.org/10.1016/j.phrs.2020.104681
  • Rashida, J. N. G., Venkatarathnakumar, T., Gowri, R., & Aruna, A. (2012). A study on ethanolic extract of Dalbergia sissoo roxb. Leaves for pancreatic lipase inhibition. Research Journal of Pharmacy and Technology, 5(4), 497–500.
  • Rodgers, R. J., Tschop, M. H., & Wilding, J. P. H. (2012). Anti-obesity drugs: Past, present and future. Disease Models & Mechanisms, 5(5), 621–626. https://doi.org/10.1242/dmm.009621
  • Ryan, D. H. (2021). Next generation antiobesity medications: Setmelanotide, semaglutide, tirzepatide and bimagrumab: What do they mean for clinical practice? Journal of Obesity & Metabolic Syndrome, 30(3), 196–208. https://doi.org/10.7570/jomes21033
  • Schrödinger Release. (2021). Schrödinger. V.4: Maestro, Schrödinger, LLC: New York, NY, (2021), Protein Preparation Wizard: Epik, Schrödinger, LLC, New York, NY, (2021), Impact: Schrödinger, LLC, New York, NY, (2021), Prime: Schrödinger, LLC, New York, NY, (2021), LigPrep: Schrödinger, LLC, New York, NY, (2021), Glide: Schrödinger, LLC, New York, NY, (2021). https://www.schrodinger.com/products/maestro.
  • Selvaraj, C., Tripathi, S. K., Reddy, K. K., & Singh, S. K. (2017). Tool development for Prediction of pIC50 values from the IC50 values-A pIC50 value calculator. Current Trends in Biotechnology and Pharmacy, 5(2), 1104–1109.
  • Sham, T. T., Chan, C. O., Wang, Y. H., Yang, J. M., Mok, D. K. W., & Chan, S. W. (2014). A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect. BioMed Research International, 2014, 925302. https://doi.org/10.1155/2014/925302
  • Sridhar, S. N. C., Ginson, G., Reddy, P. V., Tantak, M. P., Kumar, D., & Paul, A. T. (2017). Synthesis, evaluation and molecular modelling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors. Bioorganic & Medicinal Chemistry, 25(2), 609–620. https://doi.org/10.1016/j.bmc.2016.11.031
  • Srivastava, G., & Apovian, C. M. (2018). Current pharmacotherapy for obesity. Nature Reviews Endocrinology, 14(1), 12–24. https://doi.org/10.1038/nrendo.2017.122
  • Trigueros, L., Peña, S., Ugidos, A. V., Sayas-Barberá, E., Pérez-Álvarez, J. A., & Sendra, E. (2013). Food ingredients as anti-obesity agents: A review. Critical Reviews in Food Science and Nutrition, 53(9), 929–942. https://doi.org/10.1080/10408398.2011.574215
  • Van, T. H., Egloff, M. P., Martinez, C., Rugani, N., Verger, R., & Cambillau, C. (1993). Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography. Nature, 362(6423), 814–820.
  • Van, T. H., Sarda, L., Verger, R., & Cambillau, C. (1992). Structure of the pancreatic lipase–procolipase complex. Nature, 359(6391), 159–162.
  • Veeramachaneni, G. K., Raj, K. K., Chalasani, L. M., Bondili, J. S., & Talluri, V. R. (2015). High-throughput virtual screening with e-pharmacophore and molecular simulations study in the designing of pancreatic lipase inhibitors. Drug Design, Development and Therapy, 9, 4397–4412.
  • Williams, J. A., Hyland, R., Jones, B. C., Smith, D. A., Hurst, S., Goosen, T. C., Peterkin, V., Koup, J. R., & Ball, S. E. (2004). Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 32(11), 1201–1208. https://doi.org/10.1124/dmd.104.000794
  • World Health Organization. (2022). Obesity and overweight. Retrieved July 7, 2022, from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight/.
  • Wright, S. M., & Aronne, L. J. (2012). Causes of obesity. Abdominal Radiology, 37(5), 730–732. https://doi.org/10.1007/s00261-012-9862-x
  • Yadav, R. P., Shahu, R. R., Mhatre, S., Rathod, P., & Kulkarni, C. (2017). Pancreatic lipase inhibitors from plant sources for possible use as antiobesity drugs. MGM Journal of Medical Sciences, 4(4), 177–184. https://doi.org/10.5005/jp-journals-10036-1166
  • Yang, M. H., Chin, Y. W., Yoon, K. D., & Kim, J. (2014). Phenolic compounds with pancreatic lipase inhibitory activity from Korean yam (Dioscorea opposita). Journal of Enzyme Inhibition and Medicinal Chemistry, 29(1), 1–6. https://doi.org/10.3109/14756366.2012.742517
  • Yu, X., Wang, X. P., Lei, F., Jiang, J. F., Li, J., Xing, D. M., & Du, L. J. (2017). Pomegranate leaf attenuates lipid absorption in the small intestine in hyperlipidemic mice by inhibiting lipase activity. Chinese Journal of Natural Medicines, 15(10), 732–739. https://doi.org/10.1016/S1875-5364(17)30104-8
  • Yusof, I., & Segall, M. D. (2013). Considering the impact drug-like properties have on the chance of success. Drug Discovery Today, 18(13–14), 659–666. https://doi.org/10.1016/j.drudis.2013.02.008
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemisty, 56(4), 257–265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.