249
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rational design of B-cell and T-cell multi epitope-based vaccine against Zika virus, an in silico study

, , , , & ORCID Icon
Pages 3426-3440 | Received 01 Sep 2022, Accepted 06 May 2023, Published online: 16 May 2023

References

  • Agostini, F., Cirillo, D., Livi, C. M., Delli Ponti, R., & Tartaglia, G. G. (2014). cc SOL omics: A webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli. Bioinformatics (Oxford, England), 30(20), 2975–2977. https://doi.org/10.1093/bioinformatics/btu420
  • Alam, A., Ali, S., Ahamad, S., Malik, M. Z., & Ishrat, R. (2016). From ZikV genome to vaccine: In silico approach for the epitope‐based peptide vaccine against Zika virus envelope glycoprotein. Immunology, 149(4), 386–399. https://doi.org/10.1111/imm.12656
  • AlChalabi, R., Al-Rahim, A., Omer, D., & Suleiman, A. A. (2023). Immunoinformatics design of multi-epitope peptide-based vaccine against Haemophilus influenzae strain using cell division protein. Network Modeling and Analysis in Health Informatics and Bioinformatics, 12(1), 1. https://doi.org/10.1007/s13721-022-00395-x
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Amaral, M. P., de Souza Apostolico, J., Tomita, N., Coirada, F. C., Lunardelli, V. A. S., Fernandes, E. R., Souza, H. F. S., Astray, R. M., Boscardin, S. B., & Rosa, D. S. (2020). Homologous prime-boost with Zika virus envelope protein and poly (I: C) induces robust specific humoral and cellular immune responses. Vaccine, 38(20), 3653–3664. https://doi.org/10.1016/j.vaccine.2020.03.037
  • Antonelli, A. C. B., Almeida, V. P., de Castro, F. O. F., Silva, J. M., Pfrimer, I. A. H., Cunha-Neto, E., Maranhão, A. Q., Brígido, M. M., Resende, R. O., Bocca, A. L., & Fonseca, S. G. (2022). In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Scientific Reports, 12(1), 53. https://doi.org/10.1038/s41598-021-03990-6
  • Ashfaq, U. A., & Ahmed, B. (2016). De novo structural modeling and conserved epitopes prediction of Zika virus envelop protein for vaccine development. Viral Immunology, 29(7), 436–443. https://doi.org/10.1089/vim.2016.0033
  • Athanasiou, E., Agallou, M., Tastsoglou, S., Kammona, O., Hatzigeorgiou, A., Kiparissides, C., & Karagouni, E. (2017). A poly (lactic-co-glycolic) acid nanovaccine based on chimeric peptides from different Leishmania infantum proteins induces dendritic cells maturation and promotes peptide-specific IFNγ-producing CD8+ T cells essential for the protection against experimen. Frontiers in Immunology, 8, 684. https://doi.org/10.3389/fimmu.2017.00684
  • Awasthi, S., Hook, L. M., Swaminathan, G., Cairns, T. M., Brooks, B., Smith, J. S., Ditto, N. T., Gindy, M. E., Bett, A. J., Espeseth, A. S., Cohen, G. H., & Friedman, H. M. (2019). Antibody responses to crucial functional epitopes as a novel approach to assess immunogenicity of vaccine adjuvants. Vaccine, 37(29), 3770–3778. https://doi.org/10.1016/j.vaccine.2019.05.068
  • Bhattacharya, D., Nowotny, J., Cao, R., & Cheng, J. (2016). 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Research, 44(W1), W406–W409. https://doi.org/10.1093/nar/gkw336
  • Buathong, R., Hermann, L., Thaisomboonsuk, B., Rutvisuttinunt, W., Klungthong, C., Chinnawirotpisan, P., Manasatienkij, W., Nisalak, A., Fernandez, S., Yoon, I.-K., Akrasewi, P., & Plipat, T. (2015). Detection of Zika virus infection in Thailand, 2012–2014. The American Journal of Tropical Medicine and Hygiene, 93(2), 380–383. https://doi.org/10.4269/ajtmh.15-0022
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 9. https://doi.org/10.1186/1471-2105-10-421
  • Castiglione, F., Deb, D., Srivastava, A. P., Liò, P., & Liso, A. (2021). From infection to immunity: Understanding the response to SARS-CoV2 through in-silico modeling. Frontiers in Immunology, 12, 646972. https://doi.org/10.3389/fimmu.2021.646972
  • Castiglione, F., Duca, K., Jarrah, A., Laubenbacher, R., Hochberg, D., & Thorley-Lawson, D. (2007). Simulating epstein-barr virus infection with c-immsim. Bioinformatics (Oxford, England), 23(11), 1371–1377. https://doi.org/10.1093/bioinformatics/btm044
  • Choudhry, H., Alzahrani, F. A., Hassan, M. A., Alghamdi, A., Abdulaal, W. H., Bakhrebah, M. A., Zamzami, M. A., Helmi, N., Bokhari, F. F., Zeyadi, M., Baothman, O. A., Kamal, M. A., Warsi, M. K., Ali, A., Jarullah, B., & Jamal, M. S. (2019). Zika virus targeting by screening inhibitors against NS2B/NS3 protease. BioMed Research International, 2019, 1–11. https://doi.org/10.1155/2019/3947245
  • Da Conceicao, P. J. P., De Carvalho, L. R., De Godoy, B. L. V., Nogueira, M. L., Terzian, A. C. B., de Godoy, M. F., Calmon, M. F., Bittar, C., & Rahal, P. (2022). Detection of Zika virus in urine from randomly tested individuals in Mirassol, Brazil. Infection, 50(1), 149–156. https://doi.org/10.1007/s15010-021-01667-w
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England : 1993), 28(9), 1071–1081.e3. https://doi.org/10.1016/j.str.2020.06.006
  • Dick, G. W. A., Kitchen, S. F., & Haddow, A. J. (1952). Zika virus (I). Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene, 46(5), 509–520. https://doi.org/10.1016/0035-9203(52)90042-4
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—a server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6) https://doi.org/10.1007/s00894-014-2278-5
  • dos Santos Franco, L., Oliveira Vidal, P., & Amorim, J. H. (2017). In silico design of a Zika virus non-structural protein 5 aiming vaccine protection against zika and dengue in different human populations. Journal of Biomedical Science, 24(1), 10. https://doi.org/10.1186/s12929-017-0395-z
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • Duffy, M. R., Chen, T.-H., Hancock, W. T., Powers, A. M., Kool, J. L., Lanciotti, R. S., Pretrick, M., Marfel, M., Holzbauer, S., Dubray, C., Guillaumot, L., Griggs, A., Bel, M., Lambert, A. J., Laven, J., Kosoy, O., Panella, A., Biggerstaff, B. J., Fischer, M., & Hayes, E. B. (2009). Zika virus outbreak on Yap Island, federated states of Micronesia. The New England Journal of Medicine, 360(24), 2536–2543. https://doi.org/10.1056/NEJMoa0805715
  • Durbin, A. P. (2016). Vaccine development for Zika virus—timelines and strategies. Seminars in Reproductive Medicine, 34(5), 299–304. https://doi.org/10.1055/s-0036-1592070
  • Durbin, A. P., & Whitehead, S. S. (2017). Zika vaccines: Role for controlled human infection. The Journal of Infectious Diseases, 216(suppl_10), S971–S975. https://doi.org/10.1093/infdis/jix491
  • Ezzemani, W., Windisch, M. P., Altawalah, H., Guessous, F., Saile, R., Benjelloun, S., Kettani, A., & Ezzikouri, S. (2022). Design of a multi-epitope Zika virus vaccine candidate–an in-silico study. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2022.2055648
  • Fatima, I., Ahmad, S., Abbasi, S. W., Ashfaq, U. A., Shahid, F., Ul Qamar, M. T., Rehman, A., & Allemailem, K. S. (2022). Designing of a multi-epitopes-based peptide vaccine against rift valley fever virus and its validation through integrated computational approaches. Computers in Biology and Medicine, 141, 105151. https://doi.org/10.1016/j.compbiomed.2021.105151
  • Faye, O., Freire, C. C. M., Iamarino, A., Faye, O., de Oliveira, J. V. C., Diallo, M., Zanotto, P. M. A., & Sall, A. A. (2014). Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Neglected Tropical Diseases, 8(1), e2636. https://doi.org/10.1371/journal.pntd.0002636
  • Foy, B. D., Kobylinski, K. C., Foy, J. L. C., Blitvich, B. J., da Rosa, A. T., Haddow, A. D., Lanciotti, R. S., & Tesh, R. B. (2011). Probable non–vector-borne transmission of Zika virus, Colorado, USA. Emerging Infectious Diseases, 17(5), 880–882. https://doi.org/10.3201/eid1705.101939
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • Gul, S., Ahmad, S., Ullah, A., Ismail, S., Khurram, M., Tahir Ul Qamar, M., Hakami, A. R., Alkhathami, A. G., Alrumaihi, F., & Allemailem, K. S. (2022). Designing a recombinant vaccine against Providencia rettgeri using immunoinformatics approach. Vaccines, 10(2), 189. https://doi.org/10.3390/vaccines10020189
  • Hemmi, H., Kaisho, T., Takeda, K., & Akira, S. (2003). The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. Journal of Immunology (Baltimore, Md. : 1950), 170(6), 3059–3064. https://doi.org/10.4049/jimmunol.170.6.3059
  • Ikram, A., Zaheer, T., Awan, F. M., Obaid, A., Naz, A., Hanif, R., Paracha, R. Z., Ali, A., Naveed, A. K., & Janjua, H. A. (2018). Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-34254-5
  • Jahantigh, H. R., Stufano, A., Lovreglio, P., Rezaee, S. A., & Ahmadi, K. (2022). In silico identification of epitope-based vaccine candidates against HTLV-1. Journal of Biomolecular Structure & Dynamics, 40(15), 6737–6754. https://doi.org/10.1080/07391102.2021.1889669
  • Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., Sette, A., Peters, B., & Nielsen, M. (2018). Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 154(3), 394–406. https://doi.org/10.1111/imm.12889
  • Krishnan, S., Joshi, A., Akhtar, N., & Kaushik, V. (2021). Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microbial Pathogenesis, 150, 104728. https://doi.org/10.1016/j.micpath.2020.104728
  • Kumar Pandey, R., Ojha, R., Mishra, A., & Kumar Prajapati, V. (2018). Designing B‐and T‐cell multi‐epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. Journal of Cellular Biochemistry, 119(9), 7631–7642. https://doi.org/10.1002/jcb.27110
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 12. https://doi.org/10.1186/1471-2105-8-424
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (2006). PROCHECK: Validation of protein-structure coordinates.
  • Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Lima, N. S., Moon, D., Darko, S., De La Barrera, R. A., Lin, L., Koren, M. A., Jarman, R. G., Eckels, K. H., Thomas, S. J., Michael, N. L., Modjarrad, K., Douek, D. C., & Trautmann, L. (2021). Pre-existing immunity to Japanese encephalitis virus alters CD4 T cell responses to Zika virus inactivated vaccine. Frontiers in Immunology, 12, 640190. https://doi.org/10.3389/fimmu.2021.640190
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics (Oxford, England), 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386
  • Majerová, T., Novotný, P., Krýsová, E., & Konvalinka, J. (2019). Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie, 166, 132–141. https://doi.org/10.1016/j.biochi.2019.05.004
  • Martins, I. C., Ricardo, R. C., & Santos, N. C. (2022). Dengue, west Nile, and Zika viruses: Potential novel antiviral biologics drugs currently at discovery and preclinical development stages. Pharmaceutics, 14(11), 2535. https://doi.org/10.3390/pharmaceutics14112535
  • Mekonnen, D., Mengist, H. M., & Jin, T. (2022). SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways. Expert Review of Vaccines, 21(1), 69–81. https://doi.org/10.1080/14760584.2021.1991794
  • Mota, M. L., dos Santos Souza Marinho, R., Duro, R. L. S., Hunter, J., de Menezes, I. R. A., de Lima Silva, J. M. F., Pereira, G. L. T., Sabino, E. C., Grumach, A., Diaz, R. S., do Socorro Lucena, M., & Komninakis, S. V. (2021). Serological and molecular epidemiology of the Dengue, Zika and Chikungunya viruses in a risk area in Brazil. BMC Infectious Diseases, 21(1), 1–7. https://doi.org/10.1186/s12879-021-06401-3
  • Musso, D., & Gubler, D. J. (2016). Zika virus. Clinical Microbiology Reviews, 29(3), 487–524. https://doi.org/10.1128/CMR.00072-15
  • Naveed, M., Tehreem, S., Arshad, S., Bukhari, S. A., Shabbir, M. A., Essa, R., Ali, N., Zaib, S., Khan, A., Al-Harrasi, A., & Khan, I. (2021). Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. Journal of Infection and Public Health, 14(7), 938–946. https://doi.org/10.1016/j.jiph.2021.04.010
  • Parvizpour, S., Pourseif, M. M., Razmara, J., Rafi, M. A., & Omidi, Y. (2020). Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discovery Today, 25(6), 1034–1042. https://doi.org/10.1016/j.drudis.2020.03.006
  • Pattnaik, A., Sahoo, B. R., & Pattnaik, A. K. (2020). Current status of Zika virus vaccines: Successes and challenges. Vaccines, 8(2), 266. https://doi.org/10.3390/vaccines8020266
  • Petersen, L. R., & Cassetti, M. C. (2020). Learning about Zika virus epidemiology and diagnostics from blood donor studies. The Lancet. Infectious Diseases, 20(12), 1357–1359. https://doi.org/10.1016/S1473-3099(20)30125-0
  • Phatihattakorn, C., Wongsa, A., Pongpan, K., Anuwuthinawin, S., Mungmanthong, S., Wongprasert, M., & Tassaneetrithep, B. (2021). Seroprevalence of Zika virus in pregnant women from central Thailand. PloS One, 16(9), e0257205. https://doi.org/10.1371/journal.pone.0257205
  • Poland, G. A., Kennedy, R. B., Ovsyannikova, I. G., Palacios, R., Ho, P. L., & Kalil, J. (2018). Development of vaccines against Zika virus. The Lancet. Infectious Diseases, 18(7), e211–e219. https://doi.org/10.1016/S1473-3099(18)30063-X
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 8. https://doi.org/10.1186/1471-2105-9-514
  • Prasasty, V. D., Grazzolie, K., Rosmalena, R., Yazid, F., Ivan, F. X., & Sinaga, E. (2019). Peptide-based subunit vaccine design of T-and B-cells multi-epitopes against Zika virus using immunoinformatics approaches. Microorganisms, 7(8), 226. https://doi.org/10.3390/microorganisms7080226
  • Rahmani, A., Baee, M., Rostamtabar, M., Karkhah, A., Alizadeh, S., Tourani, M., & Nouri, H. R. (2019). Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. International Journal of Biological Macromolecules, 141, 125–136. https://doi.org/10.1016/j.ijbiomac.2019.08.259
  • Ranjbar, M. M., Ebrahimi, M. M., Shahsavandi, S., Farhadi, T., Mirjalili, A., Tebianian, M., & Motedayen, M. H. (2019). Novel applications of immuno-bioinformatics in vaccine and bio-product developments at research institutes. Archives of Razi Institute, 74(3), 219–233.
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics : TIG, 16(6), 276–277. https://doi.org/10.1016/s0168-9525(00)02024-2
  • Richner, J. M., & Diamond, M. S. (2018). Zika virus vaccines: Immune response, current status, and future challenges. Current Opinion in Immunology, 53, 130–136. https://doi.org/10.1016/j.coi.2018.04.024
  • Rodríguez-Morales, A. J., Bonilla-Aldana, D. K., Bonilla-Aldana, J. L., Arteaga-Livias, K., Pecho-Silva, S., & Escalera-Antezana, J. P. (2021). Role of Zika virus infection in cases and outbreaks of Guillain-Barré syndrome in Latin America: Pooling the prevalence of studies. Travel Medicine and Infectious Disease, 39, 101905. https://doi.org/10.1016/j.tmaid.2020.101905
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Saha, S., & Raghava, G. P. S. (2007). Prediction methods for B-cell epitopes. Immunoinformatics: Predicting Immunogenicity In Silico. 387–394.
  • Saisawang, C., Kuadkitkan, A., Auewarakul, P., Smith, D. R., & Ketterman, A. J. (2018). Glutathionylation of dengue and Zika NS5 proteins affects guanylyltransferase and RNA dependent RNA polymerase activities. PloS One, 13(2), e0193133. https://doi.org/10.1371/journal.pone.0193133
  • Salisch, N. C., Stephenson, K. E., Williams, K., Cox, F., van der Fits, L., Heerwegh, D., Truyers, C., Habets, M. N., Kanjilal, D. G., Larocca, R. A., Abbink, P., Liu, J., Peter, L., Fierro, C., De La Barrera, R. A., Modjarrad, K., Zahn, R. C., Hendriks, J., Cahill, C. P., … Barouch, D. H. (2021). A double-blind, randomized, placebo-controlled phase 1 study of Ad26. ZIKV. 001, an Ad26-vectored anti–Zika virus vaccine. Annals of Internal Medicine, 174(5), 585–594. https://doi.org/10.7326/M20-5306
  • Scheuermann, R. H., Sinkovits, R. S., Schenkelberg, T., & Koff, W. C. (2017). A bioinformatics roadmap for the human vaccines project. Expert Review of Vaccines, 16(6), 535–544. https://doi.org/10.1080/14760584.2017.1322752
  • Shahid, F., Ashfaq, U. A., Javaid, A., & Khalid, H. (2020). Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. Infection, Genetics and Evolution : journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 80, 104199. https://doi.org/10.1016/j.meegid.2020.104199
  • Shankar, U., Jain, N., Mishra, S. K., Sk, M. F., Kar, P., & Kumar, A. (2022). Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. Journal of Biomolecular Structure & Dynamics, 40(11), 4815–4831. https://doi.org/10.1080/07391102.2021.1874529
  • Siddique, R., Liu, Y., Nabi, G., Sajjad, W., Xue, M., & Khan, S. (2019). Zika virus potentiates the development of neurological defects and microcephaly: Challenges and control strategies. Frontiers in Neurology, 10, 319. https://doi.org/10.3389/fneur.2019.00319
  • Sippl, M. J., Lackner, P., Domingues, F. S., Prli?, A., Malik, R., Andreeva, A., & Wiederstein, M. (2001). Assessment of the CASP4 fold recognition category. Proteins: Structure, Function, and Genetics, 45(S5), 55–67. https://doi.org/10.1002/prot.10006
  • Soria-Guerra, R. E., Nieto-Gomez, R., Govea-Alonso, D. O., & Rosales-Mendoza, S. (2015). An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. Journal of Biomedical Informatics, 53, 405–414. https://doi.org/10.1016/j.jbi.2014.11.003
  • Tarrahimofrad, H., Rahimnahal, S., Zamani, J., Jahangirian, E., & Aminzadeh, S. (2021). Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Scientific Reports, 11(1), 24485. https://doi.org/10.1038/s41598-021-03932-2
  • UniProt: The universal protein knowledgebase in 2021. (2021). Nucleic Acids Research, 49(D1), D480–D489.
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the C lus P ro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • Wang, Y., Ling, L., Zhang, Z., & Marin-Lopez, A. (2022). Current Advances in Zika vaccine development. Vaccines, 10(11), 1816. https://doi.org/10.3390/vaccines10111816
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yang, Y., Sun, W., Guo, J., Zhao, G., Sun, S., Yu, H., Guo, Y., Li, J., Jin, X., Du, L., Jiang, S., Kou, Z., & Zhou, Y. (2015). In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations. Human Vaccines & Immunotherapeutics, 11(3), 795–805. https://doi.org/10.1080/21645515.2015.1012017
  • Zambrano, B., Noriega, F., Dayan, G. H., Rivera, D. M., Arredondo, J. L., Reynales, H., Luz, K., Deseda, C., Bonaparte, M. I., Langevin, E., Wu, Y., Cortés, M., Savarino, S., & DiazGranados, C. A. (2021). Zika and Dengue interactions in the context of a large Dengue Vaccine Clinical Trial in Latin America. The American Journal of Tropical Medicine and Hygiene, 104(1), 136–144. https://doi.org/10.4269/ajtmh.20-0635
  • Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15(2), 182–184. https://doi.org/10.1038/cmi.2017.92
  • Zhou, K., Li, C., Shi, W., Hu, X., Nandakumar, K. S., Jiang, S., & Zhang, N. (2021). Current progress in the development of Zika virus vaccines. Vaccines, 9(9), 1004. https://doi.org/10.3390/vaccines9091004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.