308
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Bioassay-guided identification of antithrombotic compounds from Cnidoscolus aconitifolius (Mill.) I. M. Jhonst.: molecular docking, bioavailability, and toxicity prediction

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1692-1710 | Received 21 Feb 2023, Accepted 05 Apr 2023, Published online: 26 May 2023

References

  • Achi, N., Ohaeri, C., Ijeh, I., Eleazu, C., Igwe, K., & Onyeabo, C. (2018). Ameliorative potentials of methanol fractions of cnidoscolus aconitifolius on some hematological and biochemical parameters in streptozotocin diabetic rats. Endocrine, Metabolic & Immune Disorders - Drug Targets, 18(6), 637-645. https://doi.org/10.2174/1871530318666180328112904
  • Aguinaldo, R. M. G., Castillo, S. M. J., Emlan, J. K., Gomez, A. C. G., Crisostomo, A. B. C., & Grano, R. V. R. d (2022). In silico evaluation of caffeic acid from coconut (Cocos nucifera L.) husks as a potential inhibitor of the human factor Xa. Journal of Pharmacognosy and Phytochemistry, 11(3), 01–06. https://doi.org/10.22271/phyto.2022.v11.i3a.14401
  • Alam, N., Banu, N., Aziz, M. A. I., Barua, N., Ruman, U., Jahan, I., Chy, F. J., Denath, S., Paul, A., Chy, M. N. U., Sayeed, M. A., Emran, T., Bin., & Simal-Gandara, J. (2021). Chemical profiling, pharmacological insights and in silico studies of methanol seed extract of sterculia foetida. Plants, 10(6), 1135. https://doi.org/10.3390/plants10061135
  • Aragão, G. F., Carneiro, L. M. V., Júnior, A. P. F., Bandeira, P. N., Lemos, T. L. G., & Viana, G. S. d B. (2007). Antiplatelet activity of α and β amyrin, isomeric mixture from Protium heptaphyllum. Pharmaceutical Biology, 45(5), 343–349. https://doi.org/10.1080/13880200701212916
  • Bojić, M., Debeljak, Ž., Tomičić, M., Medić-Šarić, M., & Tomić, S. (2011). Evaluation of antiaggregatory activity of flavonoid aglycone series. Nutrition Journal, 10(1), 73. https://doi.org/10.1186/1475-2891-10-73
  • Chen, Y., Yu, H., Wu, H., Pan, Y., Wang, K., Jin, Y., & Zhang, C. (2015). Characterization and quantification by LC-MS/MS of the chemical components of the heating products of the flavonoids extract in pollen typhae for transformation rule exploration. Molecules (Basel, Switzerland), 20(10), 18352–18366. https://doi.org/10.3390/molecules201018352
  • Coene, M.-C., Bult, H., Claeys, M., Laekeman, G. M., & Herman, A. G. (1986). Inhibition of rabbit platelet activation by lipoxygenase products of arachidonic and linoleic acid. Thrombosis Research, 42(2), 205–214. https://doi.org/10.1016/0049-3848(86)90296-3
  • Dabeek, W. M., & Marra, M. V. (2019). Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 11(10), 2288. https://doi.org/10.3390/nu11102288
  • Ebenezer, O. A., Kenneth, E., Monday, B. B., & Hilda, M. O. (2014). Fibrinolytic activity of some Nigerian medicinal plants. Journal of Pharmacy and Pharmacology, 2(February 2014), 177–184.
  • Escalante-Erosa, F., Ortegón-Campos, I., Parra-Tabla, V., & Peña-Rodríguez, L. M. (2004). Chemical composition of the epicuticular wax of Cnidoscolus aconitifolius. In Revista de la Sociedad Química de México, 48 (1), 24-25. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0583-76932004000100006
  • Gao, P., Li, S., Liu, K., Sun, C., Song, S., & Li, L. (2019). Antiplatelet aggregation and antithrombotic benefits of terpenes and flavones from hawthorn leaf extract isolated using the activity-guided method. Food & Function, 10(2), 859–866. https://doi.org/10.1039/C8FO01862F
  • García-Rodríguez, R. V., Gutiérrez-Rebolledo, G. A., Méndez-Bolaina, E., Sánchez-Medina, A., Maldonado-Saavedra, O., Domínguez-Ortiz, M. Á., Vázquez-Hernández, M., Muñoz-Muñiz, O. D., & Cruz-Sánchez, J. S. (2014). Cnidoscolus chayamansa Mc Vaugh, an important antioxidant, anti-inflammatory and cardioprotective plant used in Mexico. Journal of Ethnopharmacology, 151(2), 937–943. https://doi.org/10.1016/j.jep.2013.12.004
  • Gremmel, T., Yanachkov, I. B., Yanachkova, M. I., Wright, G. E., Wider, J., Undyala, V. V. R., Michelson, A. D., Frelinger, A. L., & Przyklenk, K. (2016). Synergistic inhibition of both P2Y 1 and P2Y 12 Adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(3), 501–509. https://doi.org/10.1161/ATVBAHA.115.306885
  • Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9(10), 923. https://doi.org/10.3390/antiox9100923
  • Hahn, D., & Bae, J.-S. (2019). Recent progress in the discovery of bioactive components from edible natural sources with antithrombotic activity. Journal of Medicinal Food, 22(2), 109–120. https://doi.org/10.1089/jmf.2018.4268
  • Khan, H., Pervaiz, A., Kamal, M. A., & Patel, S. (2018). Antiplatelet potential of plant-derived glycosides as possible lead compounds. Current Drug Metabolism, 19(10), 856–862. https://doi.org/10.2174/1389200219666171227204552
  • Khoo, L., Abdullah, J., Abas, F., Tohit, E., & Hamid, M. (2015). Bioassay-guided fractionation of Melastoma malabathricum Linn. Leaf solid phase extraction fraction and its anticoagulant activity. Molecules (Basel, Switzerland), 20(3), 3697–3715. https://doi.org/10.3390/molecules20033697
  • Koike, Y., Takamatsu, S., Kurimoto, S., & Kawazoe, K. (2022). Antithrombin effect of Jidabokuippo and identification of active compounds. Natural Product Communications, 17(1), 1934578X2210745. https://doi.org/10.1177/1934578X221074529
  • Kolterman, D. A., Breckon, G. J., & Kowal, R. R. (1984). Chemotaxonomic studies in Cnidoscolus (Euphorbiaceae). II. Flavonoids of C. aconitifolius, C. souzae, and C. spinosus. Systematic Botany, 9(1), 22. https://doi.org/10.2307/2418403
  • Koupenova, M., Clancy, L., Corkrey, H. A., & Freedman, J. E. (2018). Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circulation Research, 122(2), 337–351. https://doi.org/10.1161/CIRCRESAHA.117.310795
  • Kumar, S., Paul, P., Yadav, P., Kaul, R., Maitra, S. S., Jha, S. K., & Chaari, A. (2022). A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Computers in Biology and Medicine, 142, 105231. https://doi.org/10.1016/j.compbiomed.2022.105231
  • Li, Q.-Q., Yang, Y.-X., Qv, J.-W., Hu, G., Hu, Y.-J., Xia, Z.-N., & Yang, F.-Q. (2018). Investigation of interactions between thrombin and ten phenolic compounds by affinity capillary electrophoresis and molecular docking. Journal of Analytical Methods in Chemistry, 2018, 4707609. https://doi.org/10.1155/2018/4707609
  • Liao, L., Zhou, M., Wang, J., Xue, X., Deng, Y., Zhao, X., Peng, C., & Li, Y. (2021). Identification of the antithrombotic mechanism of leonurine in adrenalin hydrochloride-induced thrombosis in zebrafish via regulating oxidative stress and coagulation cascade. Frontiers in Pharmacology, 12, 742954. https://doi.org/10.3389/fphar.2021.742954
  • O'Donnell, J. S., O'Sullivan, J. M., & Preston, R. J. S. (2019). Advances in understanding the molecular mechanisms that maintain normal haemostasis. British Journal of Haematology, 186(1), 24–36. https://doi.org/10.1111/bjh.15872
  • Petta, T., Moraes, L. A. B., & Faccioli, L. H. (2015). Versatility of tandem mass spectrometry for focused analysis of oxylipids. Journal of Mass Spectrometry : JMS, 50(7), 879–890. https://doi.org/10.1002/jms.3595
  • Prasad, S., Kashyap, R. S., Deopujari, J. Y., Purohit, H. J., Taori, G. M., & Daginawala, H. F. (2006). Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thrombosis Journal, 4, 14. https://doi.org/10.1186/1477-9560-4-14
  • Quintal-Martínez, J. P., Quintal-Ortiz, I. G., Alonzo-Salomón, L. G., Muñoz-Rodríguez, D., & Segura-Campos, M. R. (2021). Antithrombotic study and identification of metabolites in Leaf extracts of chaya [Cnidoscolus aconitifolius (Mill.) I.M. Johnst.]. Journal of Medicinal Food, 24(12), 1304–1312. https://doi.org/10.1089/jmf.2021.0008
  • Quintal Martínez, J. P., & Segura Campos, M. R. (2023a). Cnidoscolus aconitifolius (Mill.) I.M. Johnst.: A food proposal against thromboembolic diseases. Food Reviews International, 1–34, 39(3), 1377–1410. https://doi.org/10.1080/87559129.2021.1934002
  • Quintal Martínez, J. P., & Segura Campos, M. R. (2023b). Bioactive compounds and functional foods as coadjuvant therapy for thrombosis. Food & Function, 14(2), 653–674. https://doi.org/10.1039/D2FO03171J
  • Ramos-Gomez, M., Figueroa-Pérez, M. G., Guzman-Maldonado, H., Loarca-Piña, G., Mendoza, S., Quezada-Tristán, T., & Reynoso-Camacho, R. (2017). Phytochemical profile, antioxidant properties and hypoglycemic effect of chaya (Cnidoscolus Chayamansa) in STZ-induced diabetic rats. Journal of Food Biochemistry, 41(1), e12281. https://doi.org/10.1111/jfbc.12281
  • Ricci, C., Wood, A., Muller, D., Gunter, M. J., Agudo, A., Boeing, H., van der Schouw, Y. T., Warnakula, S., Saieva, C., Spijkerman, A., Sluijs, I., Tjønneland, A., Kyrø, C., Weiderpass, E., Kühn, T., Kaaks, R., Sánchez, M.-J., Panico, S., Agnoli, C., … Ferrari, P. (2018). Alcohol intake in relation to non-fatal and fatal coronary heart disease and stroke: EPIC-CVD case-cohort study. BMJ (Clinical Research ed.), 361, k934. https://doi.org/10.1136/bmj.k934
  • Shanab, S. M. M., Hafez, R. M., & Fouad, A. S. (2018). A review on algae and plants as potential source of arachidonic acid. Journal of Advanced Research, 11, 3–13. https://doi.org/10.1016/j.jare.2018.03.004
  • Shovo, M. A. R. B., Tona, M. R., Mouah, J., Islam, F., Chowdhury, M. H. U., Das, T., Paul, A., Ağagündüz, D., Rahman, M., Emran, M., Bin, T., Capasso, R., & Simal-Gandara, J. (2021). Computational and pharmacological studies on the antioxidant, thrombolytic, anti-inflammatory, and analgesic activity of Molineria capitulata. Current Issues in Molecular Biology, 43(2), 434–456. https://doi.org/10.3390/cimb43020035
  • Soeda, S., Honda, O., Fujii, N., & Shimeno, H. (1997). Effect of 15-hydroperoxyeicosatetraenoic acid on the fibrinolytic factor release and the antithrombin binding of vascular endothelial cells. Biological & Pharmaceutical Bulletin, 20(1), 15–19. https://doi.org/10.1248/bpb.20.15
  • Vander dos Santos, R., Villalta-Romero, F., Stanisic, D., Borro, L., Neshich, G., & Tasic, L. (2018). Citrus bioflavonoid, hesperetin, as inhibitor of two thrombin-like snake venom serine proteases isolated from Crotalus simus. Toxicon: official Journal of the International Society on Toxinology, 143, 36–43. https://doi.org/10.1016/j.toxicon.2018.01.005
  • Vedelago, H. R., & Mahadevappa, V. G. (1988). Differential effects of 15-HPETE on arachidonic acid metabolism in collagen-stimulated human platelets. Biochemical and Biophysical Research Communications, 150(1), 177–184. https://doi.org/10.1016/0006-291X(88)90502-5
  • Vidal-Limon, A., Aguilar-Toalá, J. E., & Liceaga, A. M. (2022). Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. Journal of Agricultural and Food Chemistry, 70(4), 934–943. https://doi.org/10.1021/acs.jafc.1c06110
  • Wang, X., Yang, Z., Su, F., Li, J., Boadi, E. O., Chang, Y., & Wang, H. (2020). Study on structure activity relationship of natural flavonoids against thrombin by molecular docking virtual screening combined with activity evaluation in vitro. Molecules, 25(2), 422. https://doi.org/10.3390/molecules25020422
  • WHO. (2021). Cardiovascular diseases (CVDs) Key Facts. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  • Wright, B., Moraes, L. A., Kemp, C. F., Mullen, W., Crozier, A., Lovegrove, J. A., & Gibbins, J. M. (2010). A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids. British Journal of Pharmacology, 159(6), 1312–1325. https://doi.org/10.1111/j.1476-5381.2009.00632.x
  • Yi, F., Sun, L., Xu, L., Peng, Y., Liu, H., He, C., & Xiao, P. (2017). In silico approach for anti-Thrombosis drug discovery: P2Y1R structure-based TCMs screening. Frontiers in Pharmacology, 7, 531. https://doi.org/10.3389/fphar.2016.00531
  • Zhang, D., Gao, Z.-G., Zhang, K., Kiselev, E., Crane, S., Wang, J., Paoletta, S., Yi, C., Ma, L., Zhang, W., Han, G. W., Liu, H., Cherezov, V., Katritch, V., Jiang, H., Stevens, R. C., Jacobson, K. A., Zhao, Q., & Wu, B. (2015). Two disparate ligand-binding sites in the human P2Y1 receptor. Nature, 520(7547), 317–321. https://doi.org/10.1038/nature14287
  • Zhang, J., Zhang, K., Gao, Z.-G., Paoletta, S., Zhang, D., Han, G. W., Li, T., Ma, L., Zhang, W., Müller, C. E., Yang, H., Jiang, H., Cherezov, V., Katritch, V., Jacobson, K. A., Stevens, R. C., Wu, B., & Zhao, Q. (2014). Agonist-bound structure of the human P2Y12 receptor. Nature, 509(7498), 119–122. https://doi.org/10.1038/nature13288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.