543
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Visible-light promoted catalyst-free (VLCF) multi-component synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids: evaluation of in vitro anticancer activity, molecular docking, MD simulation and DFT studies

ORCID Icon, , , , , ORCID Icon, , , & ORCID Icon show all
Pages 3145-3165 | Received 23 Sep 2022, Accepted 01 May 2023, Published online: 25 May 2023

References

  • Acosta-Quiroga, K., Rojas-Peña, C., Nerio, L. S., Gutiérrez, M., & Polo-Cuadrado, E. (2021). Spirocyclic derivatives as antioxidants: A review. RSC Advances, 11(36), 21926–21954. https://doi.org/10.1039/d1ra01170g
  • Albini, A., & Fagnoni, M. (2004). Green Chemistry and Photochemistry were Born at the Same Time. Green Chem., 6, 1.
  • Albini, A., & Fagnoni, M. (2008) 1908: Giacomo Ciamician and the concept of green chemistry. ChemSusChem, 1, 63.
  • Allen, L. F., Eiseman, I. A., Fry, D. W., & Lenehan, P. F. (2003). CI-1033, an irreversible Pan-erbB receptor inhibitor and its potential application for the treatment of breast cancer. Seminars in Oncology, 30, 65–78.
  • Ansari, M. I., Hussain, M. K., Arun, A., Chakarvarti, B., Konwar, R., & Hajela, K. (2015). Synthesis of targeted dibenzo [b, f] thiepines and dibenzo[b,f]oxepines as potential lead molecules with promising anti-breast cancer activity. European Journal of Medicinal Chemistry, 99, 113.
  • Ansari, M. I.; Arun, A., Hussain, M. K., Konwar, R., & Hajela, K. (2016). Discovery of 3, 4, 6‐triaryl‐2‐pyridones as potential anticancer agents that promote ROS‐independent mitochondrial‐mediated apoptosis in human breast carcinoma cells. Chemistry Select, 1, 4255.
  • Bach, T., & Hehn, J. P. (2011). Photochemical reactions as key steps in natural product synthesis. Angewandte Chemie International Edition, 50, 1000.
  • Baker., W.R., & Mitscher. (1995). L.A., U.S. Patent., 5, 441, 955.
  • Bandekar, P. P., Roopnarine, K. A., Parekh, V. J., Mitchell, T. R., Novak, M. J., & Sinden, R. (2010). R. Antimicrobial activity of tryptanthrins in Escherichia coli. Journal of Medicinal Chemistry i., 53, 3558. https://doi.org/10.1016/j.bbrc.2007.04.107
  • Barker, A. J., Gibson, K. H., Grundy, W., Godfrey, A. A., Barlow, J. J., Healy, M. P., Woodburn, J. R., Ashton, S. E., Curry, B. J., & Scarlett, L. (2001). Studies leading to the identification of ZD1839 (Iressa™): An orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorganic & Medicinal Chemistry Letters, 11(14), 1911–1914.
  • Bashir, M., Yousuf, I., & Prasad, C. P. (2022). Mixed Ni(II) and Co(II) complexes of nalidixic acid drug: synthesis, characterization, DNA/bsa binding profile and in vitro cytotoxic evaluation against MDA-MB-231 and HepG2 cancer cell lines. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 271, 120910. https://doi.org/10.1016/j.saa.2022.120910
  • Becke, A. D. (1988). Density-functional Exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098.
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. the role of exact exchange. Journal of Chememical Physics, 98, 5648.
  • Bhattacharjee, A. K., Hartell, M. G., Nichols, D. A., Hicks, R. P., Stanton, B., Van Hamont, J. E., & Milhous, W. K. (2004). Eur. Structure–activity relationship study of antimalarial indolo[2,1-b]quinazoline-6,12-diones (ttryptanthrins). Three dimensional pharmacophore modeling and identification of new antimalarial candidates. J. Med. Chem, 39, 59.
  • Bhattacharjee, A. K., Skanchy, D. K., Jennings, B., Hudson, T. H., Brendle, J. J., & Werbovetz, K. A. (2002). Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures. Bioorganic & Medicinal Chemistry, 10(6), 1979–1989. https://doi.org/10.1016/S0968-0896(02)00013-5
  • Bouali, N., Hammouda, M. B., Ahmad, I., Ghannay, S., Thouri, A., Dbeibia, A., Patel, H., Hamadou, W.S., Hosni, K., Snoussi, M., Adnan, M., Hassan, M. D., Noumi, E., Aouadi K., & Kadri, A. (2022). Multifunctional derivatives of spiropyrrolidine tethered indeno-quinoxaline heterocyclic hybrids as potent antimicrobial, antioxidant and antidiabetic agents: design, synthesis, in vitro and in silico approaches. Molecules, 27, 7248.
  • Bowman, W. R., Elsegood, M. R., Stein, T., & Weaver, G. W. (2007). Radical Reactions with 3Hquinazolin- 4-ones: Synthesis of Deoxyvasicinone, Mackinazolinone, Luotonin A, Rutaecarpine and Tryptanthrin. Organic & Biomolecular Chemistry, 5(1), 103, 113.
  • Brufani, M., Fedeli, W., Mazza, F., Gerhard, A., & Keller-Schierlein, W. (1971). The structure of tryptanthrin. Experientia, 27, 1249.
  • Cai, S., Yang, K., & Wang, D. Z. (2014). Gold catalysis coupled with visible light stimulation: syntheses of functionalized indoles. Organic Letters, 16, 2606.
  • Calvo, E., Tolcher, A. W., Hammond, L. A., Patnaik, A., de Bono, J. S., Eiseman, I. A., Olson, S. C., Lenehan, P. F., McCreery, H., & LoRusso, P. (2004) Administration of CI-1033, An irreversible Pan-erbB tyrosine kinase inhibitor, is feasible on a 7-day on, 7-day off schedule a phase i pharmacokinetic and food effect study. Clinical Cancer Research, 10, 7112. https://doi.org/10.1053/j.seminoncol.2003.08.009
  • Carmi, C., Cavazzoni, A., Vezzosi, S., Bordi, F., Vacondio, F., Silva, C., Rivara, S., Lodola, A., Alfieri, R. R., Monica, S. L., Galetti, M., Ardizzoni, A., Petronini, P. G., & Mor, M. (2010). Novel irreversible epidermal growth factor receptor inhibitors by chemical modulation of the cysteine-trap portion. Journal of Medicinal Chemistry, 53(5), 2038–2050.
  • Chan, H. L., Yip, H. Y., Mak, N. K., & Leung, K. N. (2009). Modulatory effects and action mechanisms of tryptanthrin on murine myeloid leukemia cells. Cellular & Molecular Immunology, 6, 335. https://doi.org/10.1046/j.1440-1827.2001.01204.x
  • Coldham, I., & Hufton, R. (2005). Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chemical Review, 105, 2765.
  • Dai, W., Jiang, X.-L., Wu, Q., Shi, F., & Tu, S.-J. (2015). Diastereo- and enantioselective construction of 3,3′-pyrrolidinyldispirooxindole framework via catalytic asymmetric 1,3-dipolar cycloadditions. Journal of Organic Chemistry, 80, 5737.
  • De Souza, M. V. (2006). Promising drugs against tuberculosis. Recent Patents on anti-Infect Drug Discovery, 1, 33.
  • Ding, L., Meazza, M., Guo, H., Yang, J. W., & Rios, R., (2018). New development in the enantioselective synthesis of spiro compounds. Chemical Society Reviews, 47(15), 5946–5996. https://doi.org/10.1039/c6cs00825a
  • Douglas, J. J., Sevrin, M. J., & Stephenson, C. R. J. (2016). Visible light photocatalysis: applications and new disconnections in the synthesis of pharmaceutical agents. Organic Process Research & Development, 20(7), 1134–1147. https://doi.org/10.1021/acs.oprd.6b00125
  • Dreger, M., Stanisławska, M., Krajewska-Patan, A., Mielcarek, S., & Mikołajczak, P. L., Buchwald, W. (2009). Pyrrolizidine alkaloids–chemistry, biosynthesis, pathway, toxicity, safety and perspectives of medicinal usage. Herba Polonica, 55, 127.
  • Eissa, I. H., Yousef, R. G., Elkady, H., Alsfouk, A. A., Alsfouk, B. A., Husein, D. Z., Ibrahim, I. M., Elkaeed, E. B., Metwaly, & A. M. (2023). A new anticancer semisynthetic theobromine derivative targeting egfr protein: CADDD study. Life, 13(1), 191. https://doi.org/10.3390/life13010191
  • Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Bani, M. S., & Azizi, M. (2020). A New Generation of star polymer: Magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. Journal of Material Science, 55, 319.
  • Eldehna, W. M., El Hassab, M. A., Elsayed, Z. M., Al-Warhi, T., Elkady, H., Abo-Ashour, M. F., Abourehab, M. A. S., Eissa, I. H., & Abdel-Aziz, H. A. (2022). Design, synthesis, in vitro biological assessment and molecular modeling insights for novel 3-(naphthalen-1-yl)-4,5-dihydropyrazoles as anticancer agents with potential EGFR inhibitory activity. Science Reports, 12, 12821. https://doi.org/10.1038/srep16750
  • Fagnoni, M., Dondi, D. Ravelli, & D., Albini. (2007). A photocatalysis for the formation of the C–C bond. Chemical Review, 107, 2725. https://doi.org/10.1021/cr00017a016
  • Fedeli, W., & Mazza, F. (1974). Crystal Structure of Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione). J. Chem. Soc., Perkin Trans. 2, 2, 1621.
  • Filatov, A., Knyazev, N., Shmakov, S., Bogdanov, A., Ryazantsev, M., Shtyrov, A., Starova, G., Molchanov, A., Larina, A., Boitsov, V., & Stepakov, A. (2019). Concise synthesis of tryptanthrin spiro analogues with in vitro antitumor activity based on one-pot, three-component 1,3-dipolar cycloaddition of azomethine ylides to cyclopropenes. Synthesis, 51(03), 713–729. https://doi.org/10.1055/s-0037-1611059
  • Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341–357.
  • Friedlànder., P., & Roschdestwensky., N. (1915). Chemische Berichte, 48, 1841.
  • Gandin, V., Ferrarese, A., Dalla Via, M., Marzano, C., Chilin, A., & Marzaro, G. (2015). Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N’-[4-(pyrimidin-4-ylamino) phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily. Scientific Reports, 5(1), 16750.
  • Ganjoo, K. N., & Wakelee, H. (2007). Review of Erlotinib in the treatment of advanced non-small cell lung cancer. Biologics: Targets and Therapy, 1, 335.
  • Gaster, L. M., Joiner, G. F., King. F. D., Wyman. P. A., Sutton. J. M., Bingham. S., Ellis. E. S., Sanger. G. J., & Wardle. K. A. (1995). N-[(1-Butyl-4-piperidinyl)methyl]-3,4-dihydro-2H-[1,3]oxazino[3,2-a]indole-10-carboxamide hydrochloride: the first potent and selective 5-HT4 receptor antagonist amide with oral activity. Journal of Medicinal Chemistry, 38, 4760.
  • Gothelf, A. S., Gothelf, K. V., Hazell, R. G., Jørgensen, K. A. Catalytic asymmetric 1,3-dipolar cycloaddition reactions of azomethine ylides—a simple approach to optically active highly functionalized proline derivatives. Angewandte Chemie International Edition, 2002, 41, 4236.
  • Gothelf, K. V., Kobayashi, S., & Jørgensen, K. A. (2002). Cycloaddition reactions in organic synthesis. Wiley-VCH, Weinheim ed., 211.
  • Grant, B. J., Rodrigues, A. P. D. C., Elsawy, K. M., Mccammon, A. J., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Guda, R., Korra, R., Balaji, S., Palabindela, R., Eerla, R., Lingabathula, H., Yellu, N. R., Kumar, G., & Kasula, M. (2017). Design, synthesis and biological evaluation of 8-substituted-6-hydrazonoindolo[2,1-b]quinazolin- 12(6H)-one scaffolds as potential cytotoxic agents: IDO-1 targeting molecular docking studies. Bioorganic & Medicinal Chemistry Letters, 27, 4741.
  • Gupta, A., Iqbal, S., Roohi; Hussain, M. K., Zaheer, M. R., & Shankar, K. (2022). Visible Light-Promoted green and sustainable approach for one-pot synthesis of 4,4’-(arylmethylene)bis(1H-pyrazol-5-ols), in vitro anticancer activity, and molecular docking with Covid-19 Mpro. ACS Omega, 7, 34583. https://doi.org/10.1021/acsomega.2c04506
  • Hartmann, T. (1999). Chemical ecology of pyrrolizidine alkaloids. Planta, 207, 483.
  • Hicks, R. P., Nichols, D. A., DiTusa, C. A., Sullivan, D. J., Hartell, M. G., Koser, B. W., Bhattacharjee, A. K. (2005) .Evaluation of 4–azaindolo[2,1–b]quinazoline–6,12–diones’ Interaction with hemin and hemozoin: a spectroscopic, X– ray crystallographic and molecular modeling study. Internet Electronic Journal of Molecular Design, 4, 751. https://doi.org/10.1039/B614075K
  • Hiesinger, K., Dar’in, D., Proschak, E., & Krasavin, M. (2021). Spirocyclic scaffolds in medicinal chemistry. Journal of Medicinal Chemistry, 64(1), 150–183. https://doi.org/10.1021/acs.jmedchem.0c01473
  • Hirshfeld, F. (1977). Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta, 2, 44, 129, 138.
  • Honda, G., Tabata, M., & Tsuda, M. (1979). The antimicrobial specificity of tryptanthrin. Planta Med., 37, 172.
  • Hou, H., Li, H., Han, Y., & Yan, C. (2018). Synthesis of visible-light mediated tryptanthrin derivatives from isatin and isatoic anhydride under transition metal-free conditions. Organic Chemistry Frontiers, 5(1), 51–54. https://doi.org/10.1039/C7QO00740J
  • Hussain, M. H., Ansari, M. I., Yadav, N., Gupta, P. K., Gupta, A. K., Saxena, R., Fatima, I., Manohar, M., Kushwaha, P., Khedgikar, V., Gautam, J., kant, R., Moulik, P. R., Trivedi, R., Dwivedi, A., Kumar, K. R., Saxena A. K., & Hajela, K. (2014). Design and synthesis of ERα/ERβ selective coumarin and chromene derivatives as potential anti-breast cancer and anti-osteoporotic agents. RSC Advances, 4, 8828.
  • Imtiaz, S., & Syed Mashhood Ali, S. M. (2022). Atom accurate structure determination of alprazolam/cyclodextrin inclusion complexes by ROESY and computational approaches. Journal of the Indian Chemical Society, 99(1), 100299. https://doi.org/10.1016/j.jics.2021.100299
  • Imtiaz, S., Banoo, S., Muzaffar, S., & Ali, S. M. (2020). Structural determination of midazolam/beta-cyclodextrin inclusion complex by an already proposed protocol and molecular docking Studies by quantitative analysis. Structural Chemistry, 32, 128419.
  • Ishihara, T., Kohno, K., Ushio, S., Iwaki, K., Ikeda, M., Kurimoto, M. (2000). Tryptanthrin inhibits nitric oxide and prostaglandin E2 synthesis by murine macrophages. European Journal of Parmacology, 407(1-2), 197, 204.
  • Iwaki, K., Ohashi, E., Arai, N., Kohno, K., Ushio, S., Taniguchi, M., & Fukuda, S. (2011). Tryptanthrin inhibits Th2 development, and IgE-mediated degranulation and IL-4 production by rat bbasophilic leukemia RBL-2H3 cells. Journal of Ethno Pharmacology, 134, 450.
  • Ji, W., Tan, H., Wang, M., Li, P., & Wang, L. (2016). Photocatalyst-free hypervalent iodine reagent catalyzed decarboxylative acylarylation of acrylamides with α-oxocarboxylic acids driven by visible-light irradiation. Chemical Communication, 52, 1462.
  • Jun, K. Y., Park, S. E., Liang, J. L., Jahng, Y., & Kwon, Y. (2015). Benzo[b]tryptanthrin inhibits MDR1, topoisomerase activity, and reverses adriamycin resistance in breast cancer cells. ChemMedChem, 10(5), 827–835. https://doi.org/10.1002/cmdc.201500068
  • Kataoka, M., Hirata, K., Kunikata, T., Ushio, S., Iwaki, K., Ohashi, K., Ikeda, M., & Kurimoto, M. J. (2001). Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against helicobacter pylori-infected mongolian gerbils. Gastroenterology, 36, 5.
  • Kim, I., Park, S., & Hong, S. (2020). Functionalization of pyridinium derivatives with 1,4-dihydropyridines enabled by photoinduced charge transfer. Organic Letters, 22(21), 8730, 8734.
  • Kimoto, T., Hino, K., Koya-Miyata, S., Yamamoto, Y., Takeuchi, M., Nishizaki, Y., Micallef, M. J., Ushio, S., Iwaki, K., Ikeda, M., & Kurimoto, M. (2001). Cell Differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of polygonum tinctorium lour. Pathology International, 5, 51, 315, 325.
  • King, F. D., Gaster, L. M., Wyman, P. A., & Joiner, G. F. (1994). Worldwide patent 9407859. Chemistry Abstracts, 121, 157530.
  • Krivogorsky, B., Grundt, P., Yolken, R., & Jones-Brando, L. (2008). Inhibition of Toxoplasma gondii by indirubin and tryptanthrin analogs. Antimicrobial Agents of Chemotheraphy, 52, 4466.
  • Kumar, A., Gupta, M. K., & Kumar, M. (2012). l-Proline catalysed multicomponent synthesis of 3-Amino alkylated indoles via a mannich-type reaction under solvent-free conditions. Green Chemistry, 2., 14, 290, 295.
  • Latypova, D. K., Shmakov, S. V., Pechkovskaya, S. A., Filatov, A. S., Stepakov, A. V., Knyazev, N. A., & Boitsov, V. M. (2021). Identification of spiro-fused pyrrolo[3,4-a]pyrrolizines and tryptanthrines as potential antitumor agents: synthesis and in vitro evaluation. International Journal of Molecular Sciences, 22(21), 11997. https://doi.org/10.3390/ijms222111997
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785.
  • Lewis, N. S. (2007). Toward Cost-effective Solar Energy Use. Science, 315, 798. https://doi.org/10.1038/443019a
  • Li, Y., Zhang, J., Li, D., Chen, Y. (2018). Metal-Free C(sp3)–H allylation via aryl carboxyl radicals enabled by donor–acceptor complex. Organic Letters, , 20, 3296.
  • Liao, X., & Leung, K. N. (2013). Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells. Chemico-Biological Interactions, 203, 512.
  • Liddel, J. R. (1996). Pyrrolizidine alkaloids. Natural Product Reports, 13, 187.
  • Liu, T.-L., He, Z.-L., Li, Q.-H., Tao, H.-Y., & Wang, C.-J. (2011). Catalytic asymmetric construction of spirocycles containing pyrrolidine motifs and spiro quaternary stereogenic centers via 1,3-dipolar cycloaddition of azomethine ylides with 2-alkylidene-cycloketones. Advanced Synthesis & Catalysis, 353, 1713.
  • Lown, J. W. (1984). 1,3-Dipolar cycloaddition chemistry. In: Padwa, A. ed. Vol. 1, Wiley, 2.
  • Luque, F. J., Lopez, J. M., & Orozco, M. ( 2000). Perspective on “electrostatic interactions of a solute with a continuum. a direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theoretical Chemistry Accounts, 103, 343.
  • Ma, F., Xie, X., Ding, L., Gao, J., & Zhang, Z. (2011). Palladium-catalyzed coupling reaction of amino acids (esters) with aryl bromides and chlorides. Tetrahedron, 67(48), 9405–9410. https://doi.org/10.1016/j.tet.2011.09.109
  • Maleki, A. (2012). Fe3O4/SiO2 Nanoparticles: An efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron, 68, 7827.
  • Maleki, A. (2013). One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Letters, 54, 2055.
  • Maleki, A. (2014). One-Pot three-component synthesis of pyrido[20, 10: 2, 3]imidazo [4, 5-c]isoquinolines using Fe3O4-SiO2–OSO3H as an efficient heterogeneous nanocatalyst. RSC Advances, 109, 64169.
  • Maleki, A. (2018). An efficient magnetic heterogeneous nanocatalyst for the synthesis of pyrazinoporphyrazine macrocycles. Polycyclic Aromatic Compounds, 38, 402.
  • Micallef, M. J., Iwaki, K., Ishihara, T., Ushio, S., Aga, M., Kunikata, T., Koya-Miyata, S., Kimoto, T., Ikeda, M., & Kurimoto, M. (2002). The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice. International Immunopharmacology, 2(4), 565–578. https://doi.org/10.1016/s1567-5769(01)00206-5
  • Mitscher, L. A., & Baker, W. (1998). Tuberculosis: A search for novel therapy starting with natural products. Medicinal Research Reviews, , 18, 363.
  • Moon, S. Y., Lee, J.-H., Choi, H. Y., Cho, I. J., Kim, S. C., & Kim, Y. W. (2014). Tryptanthrin protects hepatocytes against oxidative stress via activation of the extracellular signal regulated kinase/NF-E2-related factor 2 pathway. Biological & Pharmaceutical Bulletin, 37(10), 1633–1640. https://doi.org/10.1248/bpb.b14-00363
  • Morton, O. (2006). Silicon Valley sunrise. Nature, 443(7107), 19–22.
  • Moteki, S. A., Usui, A., Selvakumar, S., Zhang, T., & Maruoka, K. (2014). Metal-free C-H Bond activation of branched aldehydes with a hypervalent iodine(III) catalyst under visible-light photolysis: successful trapping with electron-deficient olefins. Angewandte Chemie, International Edition, 53, 11060.
  • Motoki, T., Takami, Y., Yagi, Y., Tai, A., Yamamoto, I., & Gohda, E. (2005). Inhibition of hepatocyte growth factor induction in human dermal fibroblasts by tryptanthrin. Biological and Pharmaceutical Bulletin, 28(2), 260, 266.
  • Movassaghi, M., & Jacobsen, E. N. (2002). The simplest "enzyme”. Science (New York, N.Y.), 298(5600), 1904–1905. https://doi.org/10.1126/science.1076547
  • Mulliken, R. S. (1934). A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. Journal of Chemical Physics. 2(11), 782–793. https://doi.org/10.1063/1.1749394
  • Mulliken, R. S. (1950). Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. Journal of the American Chemical Society, 72, 600.
  • Mulliken, R. S. (1952). Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. The Journal of Physical Chemistry, 7, 56, 801, 822.
  • Muzaffar, S., Imtiaz, S., & Ali, S. M. (2020). Demonstrating accuracy of the proposed protocol for structure elucidation of cyclodextrin inclusion complexes by validation using DFT studies. Journal of Molecular Structure, 1217, 128419. https://doi.org/10.1016/j.molstruc.2020.128419
  • Nájera, C., & Sansano, J. M. ( 2009). 1,3-dipolar cycloadditions: applications to the synthesis of antiviral agents. Organic Biomolecular Chemistry, 7, 4567.
  • Nocera, D. G. (2006). On the future of global energy. Daedalus, 135, 112.
  • Nossier, E. S., Alasfoury, R. A., Hagras, M., El-Manawaty, M., Sayed, S. M., Ibrahim, I. M., Elkady, H., Eissa, I. H., & Elzahabi, H. S. A. (2022). Modified pyrido[2,3-d]pyrimidin-4(3h)-one derivatives as EGFRWT and EGFRT790M inhibitors: design, synthesis, and anti-cancer evaluation. Journal of Molecular Structure, 1270, 133971. https://doi.org/10.1016/j.molstruc.2022.133971
  • O’Hagan, D. (2000). Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Natural Product Reports, 17, 435.
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Chemical Information, 3, 33.
  • Okulik, N., & Jubert, A. H. (2005). Theoretical analysis of the reactive sites of non–steroidal anti–inflammatory drugs. internet electron. Journal of Computer-Aided Molecular Design, 4, 17.
  • Osyanin, V. A., Klimochkin, Y. N. (2009). Synthesis of the New Heterocyclic System, Indolo[2,1-b] benzoxazine. Chemistry of Heterocyclic Compounds, 45, 833.
  • Panday, S. K. (2011). Advances in the chemistry of proline and its derivatives: an excellent amino acid with versatile applications in asymmetric synthesis. Tetrahedron: Asymmetry, 22, 1817.
  • Pandey, G., Banerjee, P., & Gadre, S. R. (2006). Construction of enantiopure pyrrolidine ring system via asymmetric [3 + 2]-cycloaddition of azomethine ylides. Chemical Reviews, 106, 4484.
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512. https://doi.org/10.1021/ed064p561
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity Index. Journal of the American Chemical Society, 121, 1992.
  • Parr, R.G., & Chattaraj, P. K. (1991). Principle of maximum hardness. Journal of the American Chemical Society, 113, 1854.
  • Pearson, R. G. (1987). Recent advances in the concept of hard and soft acids and bases. Journal of Chemical Education, 64(7), 561.
  • Pitzer, K. K., Scovill, J. P., Kyle, D. E., & Gerena, L. (2000). PCT Int. Appl. WO0018769A2
  • Popczun, E. J., McKone, J. R., Read, C. G., Biacchi, A. J., Wiltrout, A. M., Lewis, N. S., & Schaak, R. E. (2013). Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 135, 9267.
  • Protti, S., & Fagnoni, M. (2009). The Sunny Side of Chemistry: Green Synthesis by Solar Light. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 8(11), 1499–1516. https://doi.org/10.1039/b909128a
  • Pu, X., Dang, Q.-D., Yang, L., Zhang, X., & Niu, D. (2022). Doubly stereoconvergent construction of vicinal all-carbon quaternary and tertiary stereocenters by cu/mg-catalyzed propargylic substitution. Nature Communications, 13(1), 2457. https://doi.org/10.1038/s41467-022-29986-y
  • Rajesh, S. M., Bala, B. D., Perumal, S., & Menendez, J. C. (2011). l-Proline-catalysed sequential four-component “on water” protocol for the synthesis of structurally complex heterocyclic Ortho-quinones. Green Chemistry, 13, 3248. https://doi.org/10.1039/C1GC16297G
  • Ramon, D. J., & Yus, M. (2005). Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angewandte Chemie (International ed. in English), 44(11), 1602–1634. https://doi.org/10.1002/anie.200460548
  • Ravelli, D., Fagnoni, M., & Albini, A. (2013). Photoorganocatalysis. Chemical Society Reviews, 42(1), 97–113. https://doi.org/10.1039/c2cs35250h
  • Recio, M.-C., Cerdá-Nicolás, M., Potterat, O., Hamburger, M., Ríos, J.-L. Anti-inflammatory and antiallergic activity in vivo of lipophilic isatis tinctoria extracts and tryptanthrin. Planta Medica, 2006, 72, 539.
  • Rehman, M. T., Ahmed, S., & Khan, A. U. (2016). Interaction of meropenem with ‘n’ and ‘b’ isoforms of human serum albumin: a spectroscopic and molecular docking study. Journal of Biomolecular Structure & Dynamics, 34(9), 1849–1864. https://doi.org/10.1080/07391102.2015.1094411
  • Robertson, J., & Stevens, (2014). Pyrrolizidine alkaloids. Natural Product Reports, 31, 1721.
  • Roth, H. D. (1989). The beginnings of organic photochemistry. Angewandte Chemie International Edition (English), 28, 1193.
  • Samanta, T., Dey, L., Dinda, J., Chattopadhyay, S. K., Seth., & S. K. (2014). Cooperativity of anion⋯π and π⋯π interactions regulates the self-assembly of a series of carbene proligands: towards quantitative analysis of intermolecular interactions with Hirshfeld Surface. Journal of Molecular Structure. 1068, 58–70. https://doi.org/10.1016/j.molstruc.2014.03.059
  • Saquib, M., Baig, M. H., Khan, M. F., Azmi, S., Khatoon, S., Rawat, A. K., Dong, J. J., Asad, M., Arshad, M., Hussain, & Design M. K. (2021). Synthesis of bioinspired benzocoumarin-chalcones chimeras as potential anti-breast cancer agents Chemistry Select, 6, 8754.
  • Sarkar, T., Das, B. K., Talukdar, K., Shah, T. A., & Punniyamurthy, T. (2020). recent advances in stereoselective ring expansion of spirocyclopropanes: access to the spirocyclic compounds. ACS Omega. 5, 26316.
  • Schindler, F., & ZäHner, H. (1971). Stoffwechselprodukte von mikroorganismen. Archiv für Mikrobiologie, 79(3), 187–203. https://doi.org/10.1007/BF00408783
  • Schmidt, V. A., Quinn, R. K., Brusoe, A. T., & Alexanian, E. J. (2014). Site-selective aliphatic c–h bromination using n-bromoamides and visible light. Journal of the American Chemical Society, 136, 14389.
  • Scovill, J., Blank, E., Konnick, M., Nenortas, E., & Shapiro T. (2002). Antitrypanosomal Activities of Tryptanthrins. Antimicrobial Agents and Chemotherapy, 46, 882. https://doi.org/10.18433/J3501W
  • Scrocco, E., & Tomasi, J. (1973). The electrostatic molecular potential as a tool for the interpretation of molecular properties. In: New concepts II. Topics in current chemistry Fortschritte der Chemischen Forschung (Vol. 42), Springer.
  • Shankar G, M., Alex, V. V., Nisthul A, A., Bava, S. V., Sundaram, S., Retnakumari, A. P., Chittalakkottu, S., & Anto, R. J. (2020). Cancer pre‐clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Proliferation, 53(1), e12710. https://doi.org/10.1111/cpr.12710
  • Shi, F., Tao, Z.-L., Luo, S.-W., Tu, S.-J., & Gong, L.-Z. (2012). Scaffold-inspired enantioselective synthesis of biologically important spiro[pyrrolidin-3,2′-oxindoles] with structural diversity through catalytic isatin-derived 1,3-dipolar cycloadditions. Chemistry—A European Journal, 18, 6885.
  • Shi, F., Zhu, R.-Y., Liang, X., & Tu, S.-J. (2013). Catalytic asymmetric 1,3-dipolar cycloadditions of alkynes with isatin-derived azomethine ylides: enantioselective synthesis of spiro[indoline-3,2′-pyrrole] derivatives. Advanced Synthesis and Catalysis, 355, 2447.
  • Shi, Q., Li, P., Zhang, Y., & Wang, L. (2017). Visible light-induced tandem oxidative oyclization of 2-alkynylanilines with disulfides (diselenides) to 3-sulfenyl- and 3-selenylindoles under transition metal-free and photocatalyst-free conditions. Organic Chemistry Frontiers., 4, 1322.
  • Singh, K., Sharma, P., Kumar, A., Chaudhary, A., & Roy, R. (2013). 4-Aminoquinazoline analogs: A novel class of anticancer agents. Mini-Reviews in Medicinal Chemistry, 13, 1177. https://doi.org/10.1021/jm901558p
  • Song, L., Zhang, L., Luo, S., & Cheng, J.-P. (2014). Visible-light promoted catalyst-free imidation of arenes and heteroarenes. Chemistry—A European Journal, 20, 14231.
  • Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. Crystal Engineering Communications, 111(), 19, 32.
  • Spackman, M. A., McKinnon, J. J., Jayatilaka, D. (2008). Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. Crystal Engineering Communications, 10, 377. https://doi.org/10.1007/BF00549096
  • Sun, Q., Li, X., Su, J., Zhao, L., Ma, M., Zhu, Y., Zhao, Y., Zhu, R., Yan, W., Wang, K., & Wang, R. (2015). The Squaramide-Catalyzed 1,3-Dipolar Cycloaddition of Nitroalkenes with N-2,2,2-Trifluoroethylisatin Ketimines: An Approach for the Synthesis of 5′-Trifluoromethyl-spiro[pyrrolidin-3,2′-oxindoles]. Adv. Synth. Catal., 357, 3187.
  • Sundberg, R., & Indoles, J. (1996). Academic Press, 175.
  • Taheri-Ledari, R., Zhang, W., Radmanesh, M., Cathcart, N., Maleki, A., & Kitaev, V. (2021). Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy. Journal of Nanobiotechnology, 19, 1.
  • Takase, Y., Saeki, T., Watanabe, N., Adachi, H., Souda, S., Saito, I., Cyclic, G. M. P. (2007). Phosphodiesterase inhibitors requirement of 6-substitution of quinazoline derivatives for potent and selective inhibitory activity. Biochemical and Biophysical Research Communications, 37(1), 2106.
  • Tavakolian, M., & Sarvari, M. H. (2022). Catalyst-free organic transformations under visible-light. ACS Sustainable Chemistry & Engineering., 38, 7, 34583–34598.
  • Terryn, R. J., German, H. W., Kummerer, T. M., Sinden, R. R., Baum, J. C., & Novak, M. J. (2014). Novel computational study on π-stacking to understand mechanistic interactions of tryptanthrin analogues with DNA. Toxicology Mechanisms and Methods, 24, 73. https://doi.org/10.1016/S0014-2999(00)00674-9
  • Traxler, P., & Furet, P. (1999). Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacology & Therapeutics, 82, 195.
  • Uzun, S., Esen, Z., Koç, E., Usta, N.C., & Ceylan M. (2019). Experimental and density functional theory (MEP, FMO, NLO, Fukui functions) and antibacterial activity studies on 2-amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] quinoline-3-carbonitrile. Journal of. Molecular Structure, 1178, 450.
  • Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H., & Sundius, T. (2016). Crystal structure, Hirshfeld surfaces and DFT computation of NLO Active (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino]prop-2-enoic Acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 625. https://doi.org/10.1039/B818330A
  • Wakeling, A. E., Guy, S. P., Woodburn, J. R., Ashton, S. E., Curry, B. J., Barker, A. J., & Gibson, K. H. (2002). ZD1839 (IressAn) orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Research, 62, 5749. https://doi.org/10.1016/S0960-894X(01)00344-4
  • Wang, C., Qi, R., Xue, H., Shen, Y., Chang, M., Chen, Y., Wang, R., & Xu, Z. (2020). Visible-Light-Promoted C(sp3) H alkylation by intermolecular charge transfer: preparation of unnatural a-amino acids and late-stage modification of peptides. Angewandte Chemie International Edition, 59, 7461. https://doi.org/10.1021/j150499a001
  • Wang, C.-S., Zhu, R.-Y., Zheng, J., Shi, F., & Tu, S.-J. (2015). Enantioselective construction of spiro[indoline-3,2′-pyrrole] framework via catalytic asymmetric 1,3-dipolar cycloadditions using allenes as equivalents of alkynes. Journal of Organic Chemistry, 80, 512.
  • Wang, H., Cheng, Y., Yu, S. (2016). Visible-light-promoted and photocatalyst-free trifluoromethylation of enamides. Science China Chemistry, 59, 195.
  • Wang, Y.-M., Zhang, H.-H., Li, C., Fanand, T., & Shi, F. (2016). Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with Isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3′-oxindole] framework. Chemisty Communication, 52, 1804.
  • Wardle, K. A., Bingham, S., Ellis, E. S., Gaster, L. M., Rushant, B., Smith, M. I., & Sanger, G. J. B. (1996). Selective and functional 5-hydroxytryptamine4 receptor antagonism by SB 207266. Journal of Pharmacology, 118, 665.
  • Wood, E. R., Truesdale, A. T., McDonald, O. B., Yuan, D., Hassell, A., Dickerson, S. H., Ellis, B., Pennisi, C., Horne, E., Lackey, K., Alligood, K. J., Rusnak, D. W., Gilmer, T. M., & Shewchuk, L. (2004). A Unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib) relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Research, 64(18), 6652–6659. https://doi.org/10.1158/0008-5472.CAN-04-1168
  • Wu, J., Bär, R. M., Guo, L., Noble, A., & Aggarwal, V. K. (2019). Photoinduced deoxygenative borylations of aliphatic alcohols. Angewandte Chemie International Edition, 58, 18830. https://doi.org/10.1021/acs.orglett.0c03347
  • Wu, J., Grant, P. S., Li, X., Noble, A., & Aggarwal, V. K. (2019). Catalyst-free deaminative functionalizations of primary amines by photoinduced single-electron transfer. Angewandte Chemie International Edition, 58, 5697.
  • Xiao, J.-A., Liu, Q., Ren, J.-W., Liu, J., Carter, R. G., Chen, X.-Q., Yang, H. (2014). Highly enantioselective construction of polycyclic spirooxindoles by organocatalytic 1,3-dipolar cycloaddition of 2-cyclohexenone catalyzed by proline-sulfonamide. European Journal of Organic Chemistry, 2014, 5700.
  • Yasutaka., T., Takao., S., Nobuhisa., W., Hideyuki., A., Shigeru., S., & Isao., S. (1994). Cyclic GMP Phosphodiesterase inhibitors. 2. Requirement of 6-substitution of quinazoline derivatives for potent and selective inhibitory activity. Journal of Medicinal Chemistry, 37, 2106.
  • Yu, S. T., Chen, T. M., Teng, S. Y., & Chen, Y. H. (2007). Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochemical and Biophysical Research Communications., 358(1), 79–84.
  • Yu, S.-T., Chen, T.-M., Chem, J.-W., Tseng, S.-Y., & Chen, Y.-H. (2009). Downregulation of GSTπ Expression by tryptanthrin contributing to sensitization of doxorubicin-resistant MCF-7 cells through c-jun NH2-terminal kinase-mediated apoptosis. Anti-Cancer Drugs, 20, 382. https://doi.org/10.1248/bpb.28.260
  • Yu, S.-T., Chen, T.-M., Tseng, S.-Y., Chen, Y.-H. (2007). Tryptanthrin Inhibits MDR1 and Reverses Doxorubicin Resistance in Breast Cancer Cells. Biochemical and Biophysical Research Communications, 358, 79.
  • Yuan, Y.-Q., Majumder, S., Yang, M.-H., & Guo, S.-R. (2020). Recent advances in catalyst-free photochemical reactions via electron-donor–acceptor (EDA) complex process. Tetrahedron Letters, 61(8), 151506. https://doi.org/10.1016/j.tetlet.2019.151506
  • Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer, 9, 28.
  • Zhao, H.-W., Yang, Z., Meng, W., Tian, T., Li, B., Song, X.-Q., Chen, X.-Q., & Pang, H.-L. (2015). Diastereo- and enantioselective synthesis of chiral pyrrolidine-fused spirooxindoles via organocatalytic [3 + 2] 1,3-dipolar cycloaddition of azomethine ylides with maleimides. Advanced Synthesis & Catalysis, 357, 2492.
  • Zhu, X., Zhang, X., Ma, G., Yan, J., Wang, H., & Yang, Q. (2011). Transport characteristics of Tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 cells. Journal of Pharmacy & Pharmaceutical Sciences, 14(3), 325.
  • Zou, Y., Zhang, G., Li, C., Long, H., Chen, D., Li, Z., Ouyang, G., Zhang, W., Zhang, Y., & Wang, Z. (2023). Discovery of tryptanthrin and its derivatives and its activities against nsclc in vitro via both apoptosis and autophagy pathways. International Journal of Molecular Sciences, 24(2), 1450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.