162
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, biological evaluation, and computational investigation of ethyl 2,4,6-trisubstituted-1,4-dihydropyrimidine-5-carboxylates as potential larvicidal agents against Anopheles arabiensis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4016-4028 | Received 07 Nov 2022, Accepted 18 May 2023, Published online: 01 Jun 2023

References

  • Agarwal, N., Srivastava, P., Raghuwanshi, S. K., Upadhyay, D. N., Sinha, S., Shukla, P. K., & Ji Ram, V. (2002). Chloropyrimidines as a new class of antimicrobial agents. Bioorganic & Medicinal Chemistry, 10(4), 869–874. https://doi.org/10.1016/s0968-0896(01)00374-1
  • Al-Shar’i, N., & Musleh, S. S. (2022). CHK1 kinase inhibition: Identification of allosteric hits using MD simulations, pharmacophore modeling, docking and MM-PBSA calculations. Molecular Diversity, 26(2), 903–921. https://doi.org/10.1007/s11030-021-10202-w
  • Al-Shar’i, N. A. (2021). Tackling COVID-19: Identification of potential main protease inhibitors via structural analysis, virtual screening, molecular docking and MM-PBSA calculations. Journal of Biomolecular Structure and Dynamics, 39(17), 6689–6704. https://doi.org/10.1080/07391102.2020.1800514
  • Al-Shar’i, N. A., & Alnabulsi, S. M. (2016). Explaining the autoinhibition of the SMYD enzyme family: A theoretical study. Journal of Molecular Graphics & Modelling, 68, 147–157. https://doi.org/10.1016/j.jmgm.2016.07.001
  • Bairagi, K. M., Venugopala, K. N., Mondal, P. K., Gleiser, R. M., Chopra, D., Garcia, D., Odhav, B., & Nayak, S. K. (2018). Larvicidal study of tetrahydropyrimidine scaffolds against Anopheles arabiensis and structural insight by single crystal X‐ray studies. Chemical Biology & Drug Design, 92(6), 1924–1932. https://doi.org/10.1111/cbdd.13351
  • Bairagi, K. M., Younis, N. S., Emeka, P. M., Venugopala, K. N., Alwassil, O. I., Khalil, H. E., Sangtani, E., Gonnade, R. G., Mohanlall, V., & Nayak, S. K. (2021). Chemistry, anti-diabetic activity and structural analysis of substituted dihydropyrimidine analogues. Journal of Molecular Structure, 1227, 129412. https://doi.org/10.1016/j.molstruc.2020.129412
  • Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R. W., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060
  • Cheung, J., Mahmood, A., Kalathur, R., Liu, L., & Carlier, P. R. (2018). Structure of the G119S mutant acetylcholinesterase of the malaria vector Anopheles gambiae reveals basis of insecticide resistance. Structure (London, England : 1993), 26(1), 130–136.e132. https://doi.org/10.1016/j.str.2017.11.021
  • Chidambaram, S., Mostafa, A. A.-F., Abdulrahman Al-Askar, A., Sayed, S. R. M., Radhakrishnan, S., & Akbar, I. (2021). Green catalyst Cu(II)-enzyme-mediated eco-friendly synthesis of 2-pyrimidinamines as potential larvicides against Culex quinquefasciatus mosquito and toxicity investigation against non-target aquatic species. Bioorganic Chemistry, 109, 104697. https://doi.org/10.1016/j.bioorg.2021.104697
  • Chitikina, S. S., Buddiga, P., Deb, P. K., Mailavaram, R. P., Venugopala, K. N., Nair, A. B., Al-Jaidi, B., & Kar, S. (2020). Synthesis and anthelmintic activity of some novel (E)-2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. Medicinal Chemistry Research, 29(9), 1600–1610. https://doi.org/10.1007/s00044-020-02586-5
  • Dharma Rao, B. D., Bhandary, S., Chopra, D., Venugopala, K. N., Gleiser, R. M., Kasumbwe, K., & Odhav, B. (2017). Synthesis and characterization of a novel series of 1,4-dihydropyridine analogues for larvicidal activity against Anopheles arabiensis. Chemical Biology & Drug Design, 90(3), 397–405. https://doi.org/10.1111/cbdd.12957
  • DiRienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tabalada, M., & Robledo, C. W. (2014). InfoStat version 2014. Group InfoStat, FCA. Universidad Nacional de. Retrieved Accessed February 12, 2022, from http://www.infostat.com.ar/.
  • Dragovich, P. S., Fauber, B. P., Corson, L. B., Ding, C. Z., Eigenbrot, C., Ge, H., Giannetti, A. M., Hunsaker, T., Labadie, S., Liu, Y., Malek, S., Pan, B., Peterson, D., Pitts, K., Purkey, H. E., Sideris, S., Ultsch, M., VanderPorten, E., Wei, B., … Zhang, X. (2013). Identification of substituted 2-thio-6-oxo-1,6-dihydropyrimidines as inhibitors of human lactate dehydrogenase. Bioorganic & Medicinal Chemistry Letters, 23(11), 3186–3194. https://doi.org/10.1016/j.bmcl.2013.04.001
  • Dyer, D. H., Lovell, S., Thoden, J. B., Holden, H. M., Rayment, I., & Lan, Q. (2003). The structural determination of an insect sterol carrier protein-2 with a ligand-bound C16 fatty acid at 1.35-Å resolution*. The Journal of Biological Chemistry, 278(40), 39085–39091. https://doi.org/10.1074/jbc.M306214200
  • Finney, D. J. (1952). Probit analysis: A statistical treatment of the sigmoid response curve. 2nd ed. Cambridge University Press.
  • Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L. M., Samborskiy, D. V., Sidorov, I. A., Sola, I., Ziebuhr, J., & Coronaviridae Study Group Of The International Committee On Taxonomy Of, V. (2020). The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536–544.
  • Inoue, M., Sumii, Y., & Shibata, N. (2020). Contribution of organofluorine compounds to pharmaceuticals. ACS Omega, 5(19), 10633–10640. https://doi.org/10.1021/acsomega.0c00830
  • Jindra, M., & Bittova, L. (2020). The juvenile hormone receptor as a target of juvenoid “insect growth regulators”. Archives of Insect Biochemistry and Physiology, 103(3), e21615. https://doi.org/10.1002/arch.21615
  • Kappe, C. O., & Stadler, A. (2004). The biginelli dihydropyrimidine synthesis. In Organic reactions. John Wiley & Sons, Inc.
  • Kim, I. H., Pham, V., Jablonka, W., Goodman, W. G., Ribeiro, J. M. C., & Andersen, J. F. (2017). A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone. The Journal of Biological Chemistry, 292(37), 15329–15339. https://doi.org/10.1074/jbc.M117.802009
  • Knutsson, S., Engdahl, C., Kumari, R., Forsgren, N., Lindgren, C., Kindahl, T., Kitur, S., Wachira, L., Kamau, L., Ekström, F., & Linusson, A. (2018). Noncovalent inhibitors of mosquito acetylcholinesterase 1 with resistance-breaking potency. Journal of Medicinal Chemistry, 61(23), 10545–10557. https://doi.org/10.1021/acs.jmedchem.8b01060
  • Lauro, G., Strocchia, M., Terracciano, S., Bruno, I., Fischer, K., Pergola, C., Werz, O., Riccio, R., & Bifulco, G. (2014). Exploration of the dihydropyrimidine scaffold for the development of new potential anti-inflammatory agents blocking prostaglandin E2 synthase-1 enzyme (mPGES-1). European Journal of Medicinal Chemistry, 80, 407–415. https://doi.org/10.1016/j.ejmech.2014.04.061
  • Mans, B. J., Calvo, E., Ribeiro, J. M., & Andersen, J. F. (2007). The crystal structure of D7r4, a salivary biogenic amine-binding protein from the malaria mosquito Anopheles gambiae. The Journal of Biological Chemistry, 282(50), 36626–36633. https://doi.org/10.1074/jbc.M706410200
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Naidu, B. N., Sorenson, M. E., Patel, M., Ueda, Y., Banville, J., Beaulieu, F., Bollini, S., Dicker, I. B., Higley, H., Lin, Z., Pajor, L., Parker, D. D., Terry, B. J., Zheng, M., Martel, A., Meanwell, N. A., Krystal, M., & Walker, M. A. (2015). Synthesis and evaluation of C2-carbon-linked heterocyclic-5-hydroxy-6-oxo-dihydropyrimidine-4-carboxamides as HIV-1 integrase inhibitors. Bioorganic & Medicinal Chemistry Letters, 25(3), 717–720. https://doi.org/10.1016/j.bmcl.2014.11.060
  • Padmashali, B., Chidananda, B. N., Govindappa, B., Basavaraj, S. M., Chandrashekharappa, S., & Venugopala, K. N. (2019). Synthesis and characterization of novel 1, 6-dihydropyrimidine derivatives for their pharmacological properties. Journal of Applied Pharmaceutical Science, 9(5), 117–124.
  • Patil, A. D., Kumar, N. V., Kokke, W. C., Bean, M. F., Freyer, A. J., De Brosse, C., Mai, S., Truneh, A., Faulkner, D. J., Carte, B., Breen, A. L., Hertzberg, R. P., Johnson, R. K., Westley, J. W., & Potts, B. C. M. (1995). Novel alkaloids from the sponge batzella Sp.: Inhibitors of HIV gp120-human CD4 binding. The Journal of Organic Chemistry, 60(5), 1182–1188. https://doi.org/10.1021/jo00110a021
  • Rovnyak, G. C., Atwal, K. S., Hedberg, A., Kimball, S. D., Moreland, S., Gougoutas, J. Z., O'Reilly, B. C., Schwartz, J., & Malley, M. F. (1992). Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. Journal of Medicinal Chemistry, 35(17), 3254–3263. https://doi.org/10.1021/jm00095a023
  • Sakanashi, M., Yoshikawa, Y., Akiyoshi, R., Itoh, C., Kitamura, Y., Niho, T., & Ohnishi, H. (1983). Possible antiarrhythmic activities of trapidil. Arzneimittel-Forschung, 33(2), 215–217.
  • Sanchez-Borzone, M. E., Mariani, M. E., Miguel, V., Gleiser, R. M., Odhav, B., Venugopala, K. N., & Garcia, D. A. (2017). Membrane effects of dihydropyrimidine analogues with larvicidal activity. Colloids and Surfaces. B, Biointerfaces, 150, 106–113. https://doi.org/10.1016/j.colsurfb.2016.11.028
  • Sandeep, C., Venugopala, K. N., Nayak, S. K., Raquel, M. G., Daniel, A. G., Kumalo, H. M., Kulkarni, R. S., Fawzi, M. M., Rashmi, V., Mahendra, K. M., & Odhav, B. (2018). One-pot microwave assisted synthesis and structural elucidation of novel ethyl 3-substituted-7-methylindolizine-1-carboxylates with larvicidal activity against Anopheles arabiensis. Journal of Molecular Structure, 1156, 377–384. https://doi.org/10.1016/j.molstruc.2017.11.131
  • Tale, R. H., Rodge, A. H., Hatnapure, G. D., & Keche, A. P. (2011). The novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of N-aryl urea: Synthesis, anti-inflammatory, antibacterial and antifungal activity evaluation. Bioorganic & Medicinal Chemistry Letters, 21(15), 4648–4651. https://doi.org/10.1016/j.bmcl.2011.03.062
  • Taylor, E. A., Rinaldo-Matthis, A., Li, L., Ghanem, M., Hazleton, K. Z., Cassera, M. B., Almo, S. C., & Schramm, V. L. (2007). Anopheles gambiae purine nucleoside phosphorylase: Catalysis, structure, and inhibition. Biochemistry, 46(43), 12405–12415. https://doi.org/10.1021/bi7010256
  • Tratrat, C. (2020). Novel thiazole-based thiazolidinones as potent anti-infective agents: In silico PASS and toxicity prediction, synthesis, biological evaluation and molecular modelling. Combinatorial Chemistry & High Throughput Screening, 23(2), 126–140. https://doi.org/10.2174/1386207323666200127115238
  • Venugopala, K. N., Nayak, S. K., Gleiser, R. M., Sanchez‐Borzone, M. E., Garcia, D. A., & Odhav, B. (2016a). Synthesis, polymorphism, and insecticidal activity of methyl 4‐(4‐chlorophenyl)‐8‐iodo‐2‐. methyl‐6‐oxo‐1, 6‐dihydro‐4H‐pyrimido [2, 1‐b] quinazoline‐3‐carboxylate against Anopheles arabiensis mosquito. Chemical Biology & Drug Design, 88(1), 88–96. https://doi.org/10.1111/cbdd.12736
  • Venugopala, K. N., Rao, G. D., Bhandary, S., Pillay, M., Chopra, D., Aldhubiab, B. E., Attimarad, M., Alwassil, O. I., Harsha, S., & Mlisana, K. (2016b). Design, synthesis, and characterization of (1-(4-aryl)-1H-1, 2, 3-triazol-4-yl) methyl, substituted phenyl-6-methyl-2-oxo-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis. Drug Design, Development and Therapy, 10, 2681–2690. https://doi.org/10.2147/DDDT.S109760
  • Venugopala, K. N., Shinu, P., Tratrat, C., Deb, P. K., Gleiser, R. M., Chandrashekharappa, S., Chopra, D., Attimarad, M., Nair, A. B., Sreeharsha, N., Mahomoodally, F. M., Haroun, M., Kandeel, M., Asdaq, S. M. B., Mohanlall, V., Al-Shar’i, N. A., & Morsy, M. A. (2022). 1,2,3-Triazolyl-tetrahydropyrimidine conjugates as potential sterol carrier protein-2 inhibitors: larvicidal activity against the malaria vector Anopheles arabiensis and in silico molecular docking study. Molecules, 27(9), 2676. https://doi.org/10.3390/molecules27092676
  • WHO. (2022). https://www.who.int/news-room/fact-sheets/detail/malaria (visited on June 26, 2022).
  • WHO. (1975). Manual on practical entomology. Geneva: WHO.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.