572
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular modelling, docking and network analysis of phytochemicals from Haritaki churna: role of protein cross-talks for their action

&
Pages 4297-4312 | Received 09 Apr 2023, Accepted 26 May 2023, Published online: 08 Jun 2023

References

  • Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. E., Khan, S. A., & Mohamed, I. N. (2022). Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Frontiers in Endocrinology, 13 https://doi.org/10.3389/fendo.2022.800714
  • Alzohairy, M. A. (2016). Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evidence-Based Complementary and Alternative Medicine, 2016, 1–11. https://doi.org/10.1155/2016/7382506
  • Ashtiani, M., Salehzadeh-Yazdi, A., Razaghi-Moghadam, Z., Hennig, H., Wolkenhauer, O., Mirzaie, M., & Jafari, M. (2018). A systematic survey of centrality measures for protein-protein interaction networks. BMC Systems Biology, 12(1), 1–17. https://doi.org/10.1186/s12918-018-0598-2
  • Bag, A., Bhattacharyya, S. K., & Chattopadhyay, R. R. (2013). The development of Terminalia chebula Retz.(Combretaceae) in clinical research. Asian Pacific Journal of Tropical Biomedicine, 3(3), 244–252. https://doi.org/10.1016/S2221-1691(13)60059-3
  • Barabási, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews. Genetics, 12(1), 56–68. https://doi.org/10.1038/nrg2918
  • Barderas, R., Bartolomé, R. A., Fernandez-Acenero, M. J., Torres, S., & Casal, J. I. (2012). High expression of IL-13 receptor α2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosisrole of IL-13Rα2 in colorectal cancer metastasis. Cancer Research, 72(11), 2780–2790. https://doi.org/10.1158/0008-5472.CAN-11-4090
  • Bartolomé, R. A., García-Palmero, I., Torres, S., López-Lucendo, M., Balyasnikova, I. V., & Casal, J. I. (2015). IL13 receptor α2 signaling requires a scaffold protein, FAM120A, to activate the FAK and PI3K pathways in colon cancer metastasisIL13Rα2 signaling in colorectal cancer metastasis. Cancer Research, 75(12), 2434–2444. https://doi.org/10.1158/0008-5472.CAN-14-3650
  • Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural Biology, 10(12), 980–980. https://doi.org/10.1038/nsb1203-980
  • Chauhan, A., Semwal, D. K., Mishra, S. P., & Semwal, R. B. (2015). Ayurvedic research and methodology: Present status and future strategies. Ayu, 36(4), 364–369. https://doi.org/10.4103/0974-8520.190699
  • Cheng, F., Desai, R. J., Handy, D. E., Wang, R., Schneeweiss, S., Barabási, A.-L., & Loscalzo, J. (2018). Network-based approach to prediction and population-based validation of in silico drug repurposing. Nature Communications, 9(1), 2691. https://doi.org/10.1038/s41467-018-05116-5
  • Dahlman-Wright, K., Cavailles, V., Fuqua, S. A., Jordan, V. C., Katzenellenbogen, J. A., Korach, K. S., Maggi, A., Muramatsu, M., Parker, M. G., & Gustafsson, J.-A. (2006). International union of pharmacology. LXIV. Estrogen receptors. Pharmacological Reviews, 58(4), 773–781. https://doi.org/10.1124/pr.58.4.8
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Davey, R. A., & Grossmann, M. (2016). Androgen receptor structure, function and biology: From bench to bedside. The Clinical Biochemist Reviews, 37(1), 3.
  • Deka, S. J., Mamdi, N., Manna, D., & Trivedi, V. (2016). Alkyl cinnamates induce protein kinase C translocation and anticancer activity against breast cancer cells through induction of the mitochondrial pathway of apoptosis. Journal of Breast Cancer, 19(4), 358–371. https://doi.org/10.4048/jbc.2016.19.4.358
  • Deka, S. J., Roy, A., Ramakrishnan, V., Manna, D., & Trivedi, V. (2017). Danazol has potential to cause PKC translocation, cell cycle dysregulation, and apoptosis in breast cancer cells. Chemical Biology & Drug Design, 89(6), 953–963. https://doi.org/10.1111/cbdd.12921
  • Elasbali, A. M., Al-Soud, W. A., Mousa Elayyan, A. E., Al-Oanzi, Z. H., Alhassan, H. H., Mohamed, B. M., Alanazi, H. H., Ashraf, M. S., Moiz, S., Patel, M., Patel, M., & Adnan, M. (2023). Integrating network pharmacology approaches for the investigation of multi-target pharmacological mechanism of 6-shogaol against cervical cancer. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2191719
  • Ellis, L. M., Staley, C. A., Liu, W., Fleming, R. Y., Parikh, N. U., Bucana, C. D., & Gallick, G. E. (1998). Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src. The Journal of Biological Chemistry, 273(2), 1052–1057. https://doi.org/10.1074/jbc.273.2.1052
  • Fan, J-h., Xu, M-m., Zhou, L-m., Gui, Z-w., Huang, L., Li, X-g., & Ye, X-l (2022). Integrating network pharmacology deciphers the action mechanism of Zuojin capsule in suppressing colorectal cancer. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 96, 153881. https://doi.org/10.1016/j.phymed.2021.153881
  • Fang, Y., Lin, S., Dou, Q., Gui, J., Li, W., Tan, H., Wang, Y., Zeng, J., Khan, A., & Wei, D.-Q. (2023). Network pharmacology-and molecular simulation-based exploration of therapeutic targets and mechanisms of heparin for the treatment of sepsis/COVID-19. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2023.2167114
  • Fruman, D. A., Chiu, H., Hopkins, B. D., Bagrodia, S., Cantley, L. C., & Abraham, R. T. (2017). The PI3K pathway in human disease. Cell, 170(4), 605–635. https://doi.org/10.1016/j.cell.2017.07.029
  • Fukuda, R., Kelly, B., & Semenza, G. L. (2003). Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor. Cancer Research, 63(9), 2330–2334.
  • Gao, F., Niu, Y., Sun, L., Li, W., Xia, H., Zhang, Y., Geng, S., Guo, Z., Lin, H., & Du, G. (2022). Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer. Journal of Ethnopharmacology, 298, 115573. https://doi.org/10.1016/j.jep.2022.115573
  • Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., & Chong, J. (2016). BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Research, 44(D1), D1045–D1053. https://doi.org/10.1093/nar/gkv1072
  • Gogoi, B., Gogoi, D., Gogoi, N., Mahanta, S., & Buragohain, A. K. (2022). Network pharmacology based high throughput screening for identification of multi targeted anti-diabetic compound from traditionally used plants. Journal of Biomolecular Structure & Dynamics, 40(17), 8004–8017. https://doi.org/10.1080/07391102.2021.1905554
  • Hao Dong, T., Yau Wen Ning, A., & Yin Quan, T. (2023). Network pharmacology-integrated molecular docking analysis of phytocompounds of Caesalpinia pulcherrima (peacock flower) as potential anti-metastatic agents. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2202273
  • Hostettmann, K., & Terreaux, C. (2000). Search for new lead compounds from higher plants. CHIMIA, 54(11), 652–652. https://doi.org/10.2533/chimia.2000.652
  • Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2007). DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Research, 35(Web Server issue), W169–W175. https://doi.org/10.1093/nar/gkm415
  • Irby, R. B., & Yeatman, T. J. (2002). Increased SRC activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Research, 62(9), 2669–2674.
  • Janani, B., Vijayakumar, M., Priya, K., Kim, J. H., Geddawy, A., Shahid, M., El-Bidawy, M. H., Al-Ghamdi, S., Alsaidan, M., Abdelzaher, M. H., Mohideen, A. P., & Ramesh, T. (2022). A network-based pharmacological investigation to identify the mechanistic regulatory pathway of andrographolide against colorectal cancer. Frontiers in Pharmacology, 13, 15. https://doi.org/10.3389/fphar.2022.967262
  • Jin, J., Chen, B., Zhan, X., Zhou, Z., Liu, H., & Dong, Y. (2021). Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PloS One, 16(6), e0252508. https://doi.org/10.1371/journal.pone.0252508
  • Jin, W. (2020). Regulation of Src family kinases during colorectal cancer development and its clinical implications. Cancers, 12(5), 1339. https://doi.org/10.3390/cancers12051339
  • Lacroix, S., Klicic Badoux, J., Scott-Boyer, M.-P., Parolo, S., Matone, A., Priami, C., Morine, M. J., Kaput, J., & Moco, S. (2018). A computationally driven analysis of the polyphenol-protein interactome. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20625-5
  • Lahti, J. L., Tang, G. W., Capriotti, E., Liu, T., & Altman, R. B. (2012). Bioinformatics and variability in drug response: A protein structural perspective. Journal of the Royal Society, Interface, 9(72), 1409–1437. https://doi.org/10.1098/rsif.2011.0843
  • Li, J., Zhou, F., Shang, L., Liu, N., Liu, Y., Zhang, M., Wang, S., & Yang, S. (2022). Integrated network pharmacology and experimental verification to investigate the mechanisms of YYFZBJS against colorectal cancer via CDK1/PI3K/Akt signaling. Frontiers in Oncology, 12 https://doi.org/10.3389/fonc.2022.961653
  • Liao, Y., & Hung, M-C. (2010). Physiological regulation of Akt activity and stability. American Journal of Translational Research, 2(1), 19.
  • Lien, G.-S., Wu, M.-S., Bien, M.-Y., Chen, C.-H., Lin, C.-H., & Chen, B.-C. (2014). Epidermal growth factor stimulates nuclear factor-κB activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3K, and Akt in human colon cancer cells. PloS One, 9(8), e104891. https://doi.org/10.1371/journal.pone.0104891
  • Lin, F., Zhang, G., Yang, X., Wang, M., Wang, R., Wan, M., Wang, J., Wu, B., Yan, T., & Jia, Y. (2023). A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. Journal of Ethnopharmacology, 303, 115933. https://doi.org/10.1016/j.jep.2022.115933
  • Mao, W., Irby, R., Coppola, D., Fu, L., Wloch, M., Turner, J., Yu, H., Garcia, R., Jove, R., & Yeatman, T. J. (1997). Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene, 15(25), 3083–3090. https://doi.org/10.1038/sj.onc.1201496
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mukherjee, P. K., Banerjee, S., & Kar, A. (2018). Exploring synergy in ayurveda and traditional Indian systems of medicine. Synergy, 7, 30–33. https://doi.org/10.1016/j.synres.2018.10.003
  • Njuguna, N. M., Ongarora, D. S., & Chibale, K. (2012). Artemisinin derivatives: A patent review (2006–present). Expert Opinion on Therapeutic Patents, 22(10), 1179–1203. https://doi.org/10.1517/13543776.2012.724063
  • Noor, F., Tahir Ul Qamar, M., Ashfaq, U. A., Albutti, A., Alwashmi, A. S., & Aljasir, M. A. (2022). Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals, 15(5), 572. https://doi.org/10.3390/ph15050572
  • Oda, K., Matsuoka, Y., Funahashi, A., & Kitano, H. (2005). A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology, 1(1), 2005.0010. https://doi.org/10.1038/msb4100014
  • Pahal, S., Gupta, A., Choudhary, P., Chaudhary, A., & Singh, S. (2022). Network pharmacological evaluation of Withania somnifera bioactive phytochemicals for identifying novel potential inhibitors against neurodegenerative disorder. Journal of Biomolecular Structure & Dynamics, 40(21), 10887–10898. https://doi.org/10.1080/07391102.2021.1951355
  • Pai, R., Soreghan, B., Szabo, I. L., Pavelka, M., Baatar, D., & Tarnawski, A. S. (2002). Prostaglandin E2 transactivates EGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nature Medicine, 8(3), 289–293. https://doi.org/10.1038/nm0302-289
  • Palleria, C., Di Paolo, A., Giofrè, C., Caglioti, C., Leuzzi, G., Siniscalchi, A., … Gallelli, L. (2013). Pharmacokinetic drug-drug interaction and their implication in clinical management. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 18(7), 601.
  • Panigrahi, S. K., & Desiraju, G. R. (2007). Strong and weak hydrogen bonds in the protein–ligand interface. Proteins, 67(1), 128–141. https://doi.org/10.1002/prot.21253
  • Parasuraman, S., Thing, G. S., & Dhanaraj, S. A. (2014). Polyherbal formulation: Concept of ayurveda. Pharmacognosy Reviews, 8(16), 73–80. https://doi.org/10.4103/0973-7847.134229
  • Pratt, W. B. (1997). The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annual Review of Pharmacology and Toxicology, 37, 297–326. https://doi.org/10.1146/annurev.pharmtox.37.1.297
  • Reddy, A. S., & Zhang, S. (2013). Polypharmacology: Drug discovery for the future. Expert Review of Clinical Pharmacology, 6(1), 41–47. https://doi.org/10.1586/ecp.12.74
  • Roskoski, R. Jr, (2015). Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacological Research, 94, 9–25. https://doi.org/10.1016/j.phrs.2015.01.003
  • Shang, L., Wang, Y., Li, J., Zhou, F., Xiao, K., Liu, Y., Zhang, M., Wang, S., & Yang, S. (2023). Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. Journal of Ethnopharmacology, 302(Pt A), 115876. https://doi.org/10.1016/j.jep.2022.115876
  • Shanmuganathan, S., & Angayarkanni, N. (2018). Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascular Pharmacology, 108, 23–35. https://doi.org/10.1016/j.vph.2018.04.005
  • Sonawane, A. R., Weiss, S. T., Glass, K., & Sharma, A. (2019). Network medicine in the age of biomedical big data. Frontiers in Genetics, 10, 294. https://doi.org/10.3389/fgene.2019.00294
  • Sun, L.-R., Zhou, W., Zhang, H.-M., Guo, Q.-S., Yang, W., Li, B.-J., Sun, Z.-H., Gao, S.-H., & Cui, R.-J. (2019). Modulation of multiple signaling pathways of the plant-derived natural products in cancer. Frontiers in Oncology, 9, 1153. https://doi.org/10.3389/fonc.2019.01153
  • Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., … Bork, P. (2016). The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 45, gkw937.
  • Thakur, M., Singh, K., & Khedkar, R. (2020). Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues. In Functional and preservative properties of phytochemicals (pp. 341–361). Elsevier.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vinay, C. M., Mehta, C. H., Bhat, C., Kamath, A., B Joshi, M., Paul, B., Nayak, U. Y., & Rai, P. S. (2023). Integrated LC-MS/MS and network pharmacology approach for predicting active ingredients and pharmacological mechanisms of Tribulus terrestris L. against cardiac diseases. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2199076
  • Wang, W., Liu, T., Yang, L., Ma, Y., Dou, F., Shi, L., Wen, A., & Ding, Y. (2019). Study on the multi-targets mechanism of triphala on cardio-cerebral vascular diseases based on network pharmacology. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 116, 108994. https://doi.org/10.1016/j.biopha.2019.108994
  • Weis, S., Shintani, S., Weber, A., Kirchmair, R., Wood, M., Cravens, A., McSharry, H., Iwakura, A., Yoon, Y-s., Himes, N., Burstein, D., Doukas, J., Soll, R., Losordo, D., & Cheresh, D. (2004). Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. Journal of Clinical Investigation, 113(6), 885–894. https://doi.org/10.1172/JCI200420702
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
  • Wong, K. K. V., Roney, M., Uddin, N., Imran, S., Gazali, A. M., Zamri, N., Rullah, K., & Aluwi, M. F. F. M. (2023). Usnic acid as potential inhibitors of BCL2 and P13K protein through network pharmacology-based analysis, molecular docking and molecular dynamic simulation. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2178506
  • Xi, P., Niu, Y., Zhang, Y., Li, W., Gao, F., Gu, W., Kui, F., Liu, Z., Lu, L., & Du, G. (2022). The mechanism of dioscin preventing lung cancer based on network pharmacology and experimental validation. Journal of Ethnopharmacology, 292, 115138. https://doi.org/10.1016/j.jep.2022.115138
  • Xu, W., Yang, Z., & Lu, N. (2015). A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhesion & Migration, 9(4), 317–324. https://doi.org/10.1080/19336918.2015.1016686
  • Yang, P.-W., Xu, P.-L., Cheng, C.-S., Jiao, J.-Y., Wu, Y., Dong, S., Xie, J., & Zhu, X.-Y. (2022). Integrating network pharmacology and experimental models to investigate the efficacy of QYHJ on pancreatic cancer. Journal of Ethnopharmacology, 297, 115516. https://doi.org/10.1016/j.jep.2022.115516
  • Yeggoni, D. P., Meti, M., & Subramanyam, R. (2023). Chebulinic and chebulagic acid binding with serum proteins: Biophysical and molecular docking approach. Journal of Biomolecular Structure and Dynamics, 41(9), 4024–4039. https://doi.org/10.1080/07391102.2022.2060862
  • Yip, H. Y. K., & Papa, A. (2021). Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells, 10(3), 659. https://doi.org/10.3390/cells10030659
  • Yu, L., Sun, L., Yu, Q., Xiong, F., Wang, D., Pu, L., Peng, F., Xie, X., & Peng, C. (2023). Bioactive compounds and mechanism of Xianglian pill in the treatment of gastric cancer: Network pharmacology analysis and experimental validation. Journal of Ethnopharmacology, 314, 116573. https://doi.org/10.1016/j.jep.2023.116573
  • Zhang, R., Zhu, X., Bai, H., & Ning, K. (2019). Network pharmacology databases for traditional Chinese medicine: Review and assessment. Frontiers in Pharmacology, 10, 123. https://doi.org/10.3389/fphar.2019.00123
  • Zhang, S., & Yu, D. (2012). Targeting Src family kinases in anti-cancer therapies: Turning promise into triumph. Trends in Pharmacological Sciences, 33(3), 122–128. https://doi.org/10.1016/j.tips.2011.11.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.