94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico studies of the interaction of the minor groove binder Hoechst 33258 with B-DNA

, &
Pages 4537-4552 | Received 23 Feb 2022, Accepted 29 May 2023, Published online: 10 Jun 2023

References

  • Abu-Daya, A., Brown, P. M., & Fox, K. R. (1995). DNA sequence preferences of several AT-selective minor groove binding ligands. Nucleic Acids Research, 23(17), 3385–3392. https://doi.org/10.1093/nar/23.17.3385
  • Alemán, C., Vega, M. C., Tabernero, L., & Bella, J. (1996). Towards an understanding of the Drug-DNA recognition mechanism. Hydrogen bond strength in netropsine-DNA complexes. The Journal of Physical Chemistry, 100(27), 11480–11487. https://doi.org/10.1021/jp960126b
  • Bailly, C., Chessari, G., Carrasco, C., Joubert, A., Mann, J., Wilson, W. D., & Neidle, S. (2003). Sequence‐specific minor groove binding by bis ‐benzimidazoles: Water molecules in ligand recognition. Nucleic Acids Research, 31(5), 1514–1524. https://doi.org/10.1093/nar/gkg237
  • Bazhulina, N. P., Nikitin, A. M., Rodin, S. A., Surovaya, A. N., Kravatsky, Y. V., Pismensky, V. F., Archipova, V. S., Martin, R., & Gursky, G. V. (2009). Binding of Hoechst 33258 and its derivatives to DNA. Journal of Biomolecular Structure & Dynamics, 26(6), 701–718. https://doi.org/10.1080/07391102.2009.10507283
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Bonvin, A. M., Sunnerhagen, M., Otting, G., & van Gunsteren, W. F. (1998). Water molecules in DNA recognition II: A molecular dynamics view of the structure and hydration of the trp operator. Journal of Molecular Biology, 282(4), 859–873. https://doi.org/10.1006/jmbi.1998.2034
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y. & Shaw, D. E. (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters, In SC’06: Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, ACM Press.
  • Breneman, C. M., & Wiberg, K. B. (1990). Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. Journal of Computational Chemistry, 11(3), 361–373. https://doi.org/10.1002/jcc.540110311
  • Breusegem, S. Y., Clegg, R. M., & Loontiens, F. G. (2002). Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex. Journal of Molecular Biology, 315(5), 1049–1061. https://doi.org/10.1006/jmbi.2001.5301
  • Breusegem, S. Y., Sadat-Ebrahimi, S. E., Douglas, K. T., Clegg, R. M., & Loontiens, F. G. (2001). Increased stability and lifetime of the complex formed between DNA and meta-phenyl-substituted Hoechst dyes as studied by fluorescence titrations and stopped-flow kinetics. Journal of Molecular Biology, 308(4), 649–663. https://doi.org/10.1006/jmbi.2001.4615
  • Brown, D., Sanderson, M., Skelly, J., Jenkins, T., Brown, T., Garman, E., Stuart, D., & Neidle, S. (1990). Crystal structure of a berenil-dodecanucleotide complex: The role of water in sequence-specific ligand binding. The EMBO Journal, 9(4), 1329–1334. https://doi.org/10.1002/j.1460-2075.1990.tb08242.x
  • Busto, N., Cano, B., Tejido, R., Biver, T., Leal, J. M., Venturini, M., Secco, F., & García, B. (2015). Aggregation features and fluorescence of Hoechst 33258. The Journal of Physical Chemistry. B, 119(13), 4575–4581. https://doi.org/10.1021/jp512306c
  • Carrondo, M. A., Coll, M., Aymami, J., Wang, A. H., van der Marel, G. A., van Boom, J. H., & Rich, A. (1989). Binding of a Hoechst dye to d(CGCGATATCGCG) and its influence on the conformation of the DNA fragment. Biochemistry, 28(19), 7849–7859. https://doi.org/10.1021/bi00445a047
  • Chaires, J. B. (1997). Energetics of drug-DNA interactions. Biopolymers, 44(3), 201–215. https://doi.org/10.1002/(SICI)1097-0282(1997)44:3<201::AID-BIP2>3.0.CO;2-Z
  • Chaires, J. B. (2006). A thermodynamic signature for drug-DNA binding mode. Archives of Biochemistry and Biophysics, 453(1), 26–31. https://doi.org/10.1016/j.abb.2006.03.027
  • Chaires, J. B., Leng, F., Przewloka, T., Fokt, I., Ling, Y. H., Perez-Soler, R., & Priebe, W. (1997). Structure-based design of a new bisintercalating anthracycline antibiotic. Journal of Medicinal Chemistry, 40(3), 261–266. https://doi.org/10.1021/jm9607414
  • Chang, D.-K., Cheng, S.-F., & Chien, T.-L. (1995). Molecular mechanics calculations on the complexes between analogues of Hoechst 33258 and d(CGCGAAT-TCGCG)2: Influence of bulky group substitution on base pair preference of DNA minor groove binders. Canadian Journal of Chemistry, 73(6), 878–884. https://doi.org/10.1139/v95-110
  • Chirlian, L. E., & Francl, M. M. (1987). Atomic charges derived from electrostatic potentials: A detailed study. Journal of Computational Chemistry, 8(6), 894–905. https://doi.org/10.1002/jcc.540080616
  • Cho, A. E., Guallar, V., Berne, B. J., & Friesner, R. (2005). Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. Journal of Computational Chemistry, 26(9), 915–931. https://doi.org/10.1002/jcc.20222
  • Denison, L., Haigh, A., D'Cunha, G., & Martin, R. F. (1992). DNA ligands as radioprotectors: Molecular studies with Hoechst 33342 and Hoechst 33258. International Journal of Radiation Biology, 61(1), 69–81. https://doi.org/10.1080/09553009214550641
  • D’Incalci, M. (1994). DNA-minor-groove alkylators, a new class of anticancer agents. Annals of Oncology, 5, 877–878.
  • Fede, A., Billeter, M., Leupin, W., & Wüthrich, K. (1993). Determination of the NMR solution structure of the Hoechst 33258-d(GTGGAATTCCAC)2 complex and comparison with the X-ray crystal structure. Structure (London, England : 1993), 1(3), 177–186. https://doi.org/10.1016/0969-2126(93)90019-d
  • Fede, A., Labhardt, A., Bannwarth, W., & Leupin, W. (1991). Dynamics and binding mode of Hoechst 33258 to d(GTGGAATTCCAC)2 in the 1:1 solution complex as determined by two-dimensional proton NMR. Biochemistry, 30(48), 11377–11388. https://doi.org/10.1021/bi00112a004
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision Glide: Docking and scoring Incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21)2006, 6177–6196. https://doi.org/10.1021/jm051256o
  • Guan, Y., Shi, R., Li, X., Zhao, M., & Li, Y. (2007). Multiple binding modes for dicationic Hoechst 33258 to DNA. The Journal of Physical Chemistry. B, 111(25), 7336–7344. https://doi.org/10.1021/jp066344e
  • Halgren, T. A. (1999a). MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry, 20(7), 720–729. https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Halgren, T. A. (1999b). MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. Journal of Computational Chemistry, 20(7), 730–748. https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<730::AID-JCC8>3.0.CO;2-T
  • Haq, I., Ladbury, J. E., Chowdhry, B. Z., Jenkins, T. C., & Chaires, J. B. (1997). Specific binding of Hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: Calorimetric and spectroscopic studies. Journal of Molecular Biology, 271(2), 244–257. https://doi.org/10.1006/jmbi.1997.1170
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Harris, S. A., Gavathiotis, E., Searle, M. S., Orozco, M., & Laughton, C. A. (2001). Cooperativity in drug − DNA recognition: A molecular dynamics study. Journal of the American Chemical Society, 123(50), 12658–12663. https://doi.org/10.1021/ja016233n
  • Hayes, M. J., Stein, M., & Weiser, J. (2004). Accurate calculations of ligand binding free energies: Chiral separation with enantioselective receptors. The Journal of Physical Chemistry A, 108(16), 3572–3580. https://doi.org/10.1021/jp0373797
  • Issar, U., Kumari, T., & Kakkar, R. (2015). Assessment of molecular binding of Hoechst 33258 analogues into DNA using docking and MM/GBSA approach. Journal of Computational Science, 10, 166–177. https://doi.org/10.1016/j.jocs.2015.05.003
  • Issar, U., Kumari, T., Arora, R., & Kakkar, R. (2017). Conformational properties of DNA minor groove binder Hoechst 33258 in gas phase and in aqueous solution. Computational and Theoretical Chemistry, 1113, 32–41. https://doi.org/10.1016/j.comptc.2017.05.006
  • Jeffrey, G. A. (1997). An introduction to hydrogen bonding. Oxford University Press.
  • Jørgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kakkar, R., Garg., & R., Suruchi. (2004). Theoretical studies on the mechanism of radioprotection by Hoechst 33258 derivatives. Journal of Molecular Structure: THEOCHEM, 668(2-3), 243–248., https://doi.org/10.1016/j.theochem.2003.10.051
  • Kakkar, R., Garg., & R., Suruchi. (2002). Towards understanding the molecular recognition process in Hoechst–DNA complexes. Journal of Molecular Structure: THEOCHEM, 584(1-3), 37–44., https://doi.org/10.1016/S0166-1280(02)00026-X
  • Kumar, S., Yadagiri, B., Zimmermann, J., Pon, R. T., & Lown, J. W. (1990). Sequence specific molecular recognition and binding by a GC recognizing Hoechst-33258 analog to the decadeoxyribonucleotide d-[CATGGCCATG]2 - structural and dynamic aspects deduced from high-field H-1-NMR studies. Journal of Biomolecular Structure & Dynamics, 8(2), 331–357. https://doi.org/10.1080/07391102.1990.10507809
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Lee, M., Rhodes, A. L., Wyatt, M. D., Forrow, S., & Hartley, J. A. (1993). Design, synthesis, and biological evaluation of DNA sequence and minor groove selective alkylating agents. Anti-Cancer Drug Design, 8(3), 173–192.
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Li, S., Olson, W. K., & Lu, X.-J. (2019). Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Research, 47(W1), W26–W34. https://doi.org/10.1093/nar/gkz394
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé-Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Miehlich, B., Savin, A., Stoll, H., & Preuss, H. (1989). Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chemical Physics Letters, 157(3), 200–206. https://doi.org/10.1016/0009-2614(89)87234-3
  • Minasov, G., Tereshko, V., & Egli, M. (1999). Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. Journal of Molecular Biology, 291(1), 83–99. https://doi.org/10.1006/jmbi.1999.2934
  • Morozov, V. N., & Kuzmin, V. A. (2019). Fluorescence self-quenching of Hoechst 33258 and SYBR Green I dyes in a DNA cholesteric liquid-crystalline matrix. High Energy Chemistry, 53(2), 167–169. https://doi.org/10.1134/S0018143919020103
  • Murphy, R. B., Philipp, D. M., & Friesner, R. A. (2000). A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. Journal of Computational Chemistry, 21(16), 1442–1457. https://doi.org/10.1002/1096-987X(200012)21:16<1442::AID-JCC3>3.0.CO;2-O
  • Neidle, S. (1997). Crystallographic insights into DNA minor groove recognition by drugs. Biopolymers, 44(1), 105–121. https://doi.org/10.1002/(SICI)1097-0282(1997)44:1<105::AID-BIP7>3.0.CO;2-Z
  • Parkinson, J. A., Barber, J., Buckingham, B. A., Douglas, K. T., & Morris, G. A. (1992). Hoechst-33258 and its complex with the oligonucleotide d(CGCGAATTCGCG)2 - H-1-NMR assignments and dynamics. Magnetic Resonance in Chemistry, 30(11), 1064–1069. https://doi.org/10.1002/mrc.1260301107
  • Parkinson, J. A., Barber, J., Douglas, K. T., Rosamund, J., & Sharples, D. (1989). Nuclear magnetic resonance probing of binding interactions used by minor groove binding, DNA-directed ligands: Assignment of the binding site of Hoechst 33258 on the self-complementary oligonucleotide, d(CGCGAATTCGCG). Journal of the Chemical Society, Chemical Communications, (15), 1023–1025. https://doi.org/10.1039/c39890001023
  • Parkinson, J. A., Barber, J., Douglas, K. T., Rosamond, J., & Sharples, D. (1990). Minor-groove recognition of the self-complementary duplex d(CGCGAATTCGCG)2 by Hoechst 33258: A high-field NMR study. Biochemistry, 29(44), 10181–10190. https://doi.org/10.1021/bi00496a005
  • Philipp, D. M., & Friesner, R. A. (1999). Mixed ab initio QM/MM modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide. Journal of Computational Chemistry, 20(14), 1468–1494. https://doi.org/10.1002/(SICI)1096-987X(19991115)20:14<1468::AID-JCC2>3.0.CO;2-0
  • Pjura, P. E., Grzeskowiak, K., & Dickerson, R. E. (1987). Binding of Hoechst 33258 to the minor groove of B-DNA. Journal of Molecular Biology, 197(2), 257–271. https://doi.org/10.1016/0022-2836(87)90123-9
  • Quintana, J. R., Lipanov, A. A., & Dickerson, R. E. (1991). Low-temperature crystallographic analyses of the binding of Hoechst 33258 to the double-helical DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G. Biochemistry, 30(42), 10294–10306. https://doi.org/10.1021/bi00106a030
  • Reddy, S. Y., Leclerc, F., & Karplus, M. (2003). DNA polymorphism: A comparison of force fields for nucleic acids. Biophysical Journal, 84(3), 1421–1449. https://doi.org/10.1016/S0006-3495(03)74957-1
  • Rosu, F., Gabelica, V., Houssier, C., & De Pauw, E. (2002). Determination of affinity, stoichiometry, and sequence selectivity of minor groove binder complexes with double‐stranded oligodeoxynucleotides by electrospray ionization mass spectrometry. Nucleic Acids Research, 30(16), e82. https://doi.org/10.1093/nar/gnf081
  • Sands, Z. A., & Laughton, C. A. (2004). Molecular Dynamics of DNA using the generalized Born solvation model. The Journal of Physical Chemistry B, 108(28), 10113–10119. https://doi.org/10.1021/jp048757q
  • Silva, E. F., Ramos, E. B., & Rocha, M. S. (2013). DNA Interaction with Hoechst 33258: Stretching experiments decouple the different binding modes. The Journal of Physical Chemistry. B, 117(24), 7292–7296. https://doi.org/10.1021/jp403945e
  • Špačková, N., Cheatham, T. E., III, Ryjáček, F., Lankaš, F., van Meervelt, L., Hobza, P., & Šponer, J. (2003). Molecular dynamics simulations and thermodynamics analysis of DNA − drug complexes. Minor groove binding between 4‘,6-diamidino-2-phenylindole and DNA duplexes in solution. Journal of the American Chemical Society, 125(7), 1759–1769. https://doi.org/10.1021/ja025660d
  • Spink, N., Brown, D. G., Skelly, J. V., & Neidle, S. (1994). Sequence-dependent effects in drug-DNA interaction: The crystal structure of Hoechst 33258 bound to the d(CGCAAATTTGCG)2 duplex. Nucleic Acids Research, 22(9), 1607–1612. https://doi.org/10.1093/nar/22.9.1607
  • Teng, M.-K., Usman, N., Frederick, C., A., & Wang, A. H.-J. (1988). The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG. Nucleic Acids Research, 16(6), 2671–2690.) https://doi.org/10.1093/nar/16.6.2671
  • Toukmaji, A. Y., & Board, J. A. Jr. (1996). Ewald Summation techniques in perspective: A survey. Computer Physics Communications, 95(2-3), 73–92. https://doi.org/10.1016/0010-4655(96)00016-1
  • Valdes-García, J., Viviano-Posadas, A. O., Rivera-Chávez, J., Ramírez-Apan, T., Martínez-Vargas, S., Aguirre-Hernández, E., German-Acacio, J. M., Morales-Morales, D., & Dorazco-González, A. (2022). Crystal structures and study of interaction mode of bis-benzimidazole-benzene derivatives with DNA. Journal of Molecular Structure, 1249, 131582. https://doi.org/10.1016/j.molstruc.2021.131582
  • Vega, M. C., García Sáez, I., Aymamí, J., Eritja, R., Van der Marel, G. A., Van Boom, J. H., Rich, A., & Coll, M. (1994). Three-dimensional crystal structure of the A-tract DNA dodecamer d(CGCAAATTTGCG) complexed with the minor-groove-binding drug Hoechst 33258. European Journal of Biochemistry, 222(3), 721–726. https://doi.org/10.1111/j.1432-1033.1994.tb18917.x
  • Wellenzohn, B., Flader, W., Winger, R. H., Hallbrucker, A., Mayer, E., & Liedl, R. (2001). Complex of B-DNA with polyamides freezes DNA backbone flexibility. Journal of the American Chemical Society, 123(21), 5044–5049. https://doi.org/10.1021/ja003639b
  • Woods, R. J., Khalil, M., Pell, W., Moffat, S. H., & Smith, V. H. Jr (1990). Derivation of net atomic charges from molecular electrostatic potentials. Journal of Computational Chemistry, 11(3), 297–310. https://doi.org/10.1002/jcc.540110304
  • Zhang, X. X., Brantley, S. L., Corcelli, S. A., & Tokmakoff, A. (2020). DNA minor-groove binder Hoechst 33258 destabilizes base-pairing adjacent to its binding site. Communications Biology, 3(1), 525. https://doi.org/10.1038/s42003-020-01241-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.