94
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In silico and in vitro evaluation of designed fluconazole analogues as lanosterol 14α-demethylase inhibitors

, , , , &
Pages 4553-4566 | Received 02 Feb 2023, Accepted 29 May 2023, Published online: 09 Jun 2023

References

  • Al-Baqsami, Z. F., Ahmad, S., & Khan, Z. (2020). Antifungal drug susceptibility, molecular basis of resistance to echinocandins and molecular epidemiology of fluconazole resistance among clinical Candida glabrata isolates in Kuwait. Scientific Reports, 10(1), 6238. https://doi.org/10.1038/s41598-020-63240-z
  • Barchiesi, F., Spreghini, E., Maracci, M., Fothergill, A. W., Baldassarri, I., Rinaldi, M. G., & Scalise, G. (2004). In vitro activities of voriconazole in combination with three other antifungal agents against Candida glabrata. Antimicrobial Agents and Chemotherapy, 48(9), 3317–3322. https://doi.org/10.1128/AAC.48.9.3317-3322.2004
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572
  • Bibi, Z. (2008). Role of cytochrome P450 in drug interactions. Nutrition & Metabolism, 5(1), 27. https://doi.org/10.1186/1743-7075-5-27
  • Blundell, T. L., Sibanda, B. L., Montalvão, R. W., Brewerton, S., Chelliah, V., Worth, C. L., Harmer, N. J., Davies, O., & Burke, D. (2006). Structural biology and bioinformatics in drug design: Opportunities and challenges for target identification and lead discovery. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1467), 413–423. https://doi.org/10.1098/rstb.2005.1800
  • Brammer, K. W., Farrow, P. R., & Faulkner, J. K. (1990). Pharmacokinetics and tissue penetration of fluconazole in humans. Reviews of Infectious Diseases, 12, 318–327.
  • Brüggemann, R. J. M., Alffenaar, J.-W C., Blijlevens, N. M. A., Billaud, E. M., Kosterink, J. G. W., Verweij, P. E., & Burger, D. M. (2009). Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clinical Infectious Diseases, 48(10), 1441–1458. https://doi.org/10.1086/598327
  • Cha, R., & Sobel, J. D. (2004). Fluconazole for the treatment of candidiasis: 15 years experience. Expert Review of Anti-Infective Therapy, 2(3), 357–366. https://doi.org/10.1586/14787210.2.3.357
  • Chai, X., Zhang, J., Yu, S., Hu, H., Zou, Y., Zhao, Q., Dan, Z., Zhang, D., & Wu, Q. (2009). Design, synthesis, and biological evaluation of novel 1-(1H-1, 2, 4-triazole-1-yl)-2-(2, 4-difluorophenyl)-3-substituted benzylamino-2-propanols. Bioorganic & Medicinal Chemistry, 19(6), 1811–1814. https://doi.org/10.1016/j.bmcl.2009.01.048
  • Chandrika, N. T., Shrestha, S. K., Ngo, H. X., Howard, K. C., & Garneau-Tsodikova, S. (2018). Novel fluconazole derivatives with promising antifungal activity. Bioorganic & Medicinal Chemistry, 26(3), 573–580. https://doi.org/10.1016/j.bmc.2017.12.018
  • Chaturvedi, V., Ramani, R., Andes, D., Diekema, D. J., Pfaller, M. A., Ghannoum, M. A., Knapp, C., Lockhart, S. R., Ostrosky-Zeichner, L., Walsh, T. J., Marchillo, K., Messer, S., Welshenbaugh, A. R., Bastulli, C., Iqbal, N., Paetznick, V. L., Rodriguez, J., & Sein, T. (2011). Multilaboratory testing of two-drug combinations of antifungals against Candida albicans, Candida glabrata, and Candida parapsilosis. Antimicrobial Agents and Chemotherapy, 55(4), 1543–1548. https://doi.org/10.1128/AAC.01510-09
  • Chen, J., & Shen, B. (2009). Computational Analysis of amino acid mutation: A proteome wide perspective. Current Proteomics, 6(4), 228–234. https://doi.org/10.2174/157016409789973734
  • CLSI. (2002). Performance standards for antifungal susceptibility testing of yeasts. CLSI Supplement M60. (1st ed.). Clinical and Laboratory Standards.
  • CLSI. (2017). Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI Standard M27 (4th ed.). Clinical and Laboratory Standards.
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dangi, M., Khichi, A., Jakhar, R., & Chhillar, A. K. (2021). Growing preferences towards Analog-based drug discovery. Current Pharmaceutical Biotechnology, 22(8), 1030–1045. https://doi.org/10.2174/1389201021666200908121409
  • Dutta, K., Elmezayen, A. D., Al-Obaidi, A., Zhu, W., Morozova, O. V., Shityakov, S., & Khalifa, I. (2021). Seq12, Seq12m, and Seq13m, peptide analogues of the spike glycoprotein shows antiviral properties against SARS-CoV-2: An in silico study through molecular docking, molecular dynamics simulation, and MM-PB/GBSA calculations. Journal of Molecular Structure, 1246, 131113. https://doi.org/10.1016/j.molstruc.2021.131113
  • Emami, S., Ghobadi, E., Saednia, S., & Hashemi, S. M. (2019). Current advances of triazole alcohols derived from fluconazole: Design, in vitro and in silico studies. European Journal of Medicinal Chemistry, 170, 173–194. https://doi.org/10.1016/j.ejmech.2019.03.020
  • Fattouh, N., Hdayed, D., Geukgeuzian, G., Tokajian, S., & Khalaf, R. A. (2021). Molecular mechanism of fluconazole resistance and pathogenicity attributes of Lebanese Candida albicans hospital isolates. Fungal Genetics and Biology, 153, 103575. https://doi.org/10.1016/j.fgb.2021.103575
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Ghorab, M. M., Alsaid, M. S., Al-Ansary, G. H., Abdel-Latif, G. A., & Abou El Ella, D. A. (2016). Analogue based drug design, synthesis, molecular docking and anticancer evaluation of novel chromene sulfonamide hybrids as aromatase inhibitors and apoptosis enhancers. European Journal of Medicinal Chemistry, 124, 946–958. https://doi.org/10.1016/j.ejmech.2016.10.020
  • Giraud, F., Loge, C., Pagniez, F., Crepin, D., Pape, P. L., & Borgne, M. L. (2008). Design, synthesis, and evaluation of 1-(N-benzylamino)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as antifungal agents. Bioorganic & Medicinal Chemistry Letters, 18(6), 1820–1824. https://doi.org/10.1016/j.bmcl.2008.02.027
  • Goa, K. L., & Barradell, L. B. (1995). Fluconazole. An update of its Pharmacodynamic and pharmacokinetic properties and therapeutic use in major superficial and systemic mycoses in immunocompromised patients. Drugs, 50(4), 658–690. https://doi.org/10.2165/00003495-199550040-00007
  • Guillon, R., Pagniez, F., Giraud, F., Crépin, D., Picot, C., Le Borgne, M., Morio, F., Duflos, M., Logé, C., & Le Pape, P. (2011). Design, synthesis, and in vitro antifungal activity of 1-[(4-substituted-benzyl)methylamino]-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols. ChemMedChem. 6(5), 816–825. https://doi.org/10.1002/cmdc.201000530
  • Jakhar, R., Khichi, A., Kumar, D., Dangi, M., & Chhillar, A. K. (2022). Discovery of novel inhibitors of bacterial DNA gyrase using a QSAR-Based Approach. ACS Omega, 7(36), 32665–32678. https://doi.org/10.1021/acsomega.2c04310
  • Johansson, M. U., Zoete, V., Michielin, O., & Guex, N. (2012). Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics, 13, 173. https://doi.org/10.1186/1471-2105-13-173
  • Kainz, K., Bauer, M. A., Madeo, F., & Carmona-Gutierrez, D. (2020). Fungal infections in humans: The silent crisis. Microbial Cell (Graz, Austria), 7(6), 143–145. https://doi.org/10.15698/mic2020.06.718
  • Khalifa, H. O., Majima, H., Watanabe, A., & Kamei, K. (2021). In vitro characterization of twenty-one antifungal combinations against echinocandin-resistant and -susceptible Candida glabrata. Journal of Fungi (Basel), 7(2), 1-15. https://doi.org/10.3390/jof7020108
  • Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery, 3(8), 711–715. https://doi.org/10.1038/nrd1470
  • Lebouvier, N., Pagniez, F., Duflos, M., Pape, L. P., Na, Y. M., Baut, L. G., & Borgne, L. M. (2007). Synthesis and antifungal activities of new fluconazole analogues with azaheterocycle moiety. Bioorganic & Medicinal Chemistry Letters, 17(13), 3686–3689. https://doi.org/10.1016/j.bmcl.2007.04.038
  • Lewis, R. E., Diekema, D. J., Messer, S. A., Pfaller, M. A., & Klepser, M. E. (2002). Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. The Journal of Antimicrobial Chemotherapy, 49(2), 345–351. https://doi.org/10.1093/jac/49.2.345
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Liu, P., Zhu, S., Li, P., Xie, W., Jin, Y., Sun, Q., Wu, Q., Sun, P., Zhang, Y., Yang, X., Jiang, Y., & Zhang, D. (2008). Synthesis and SAR studies of biaryloxy-substituted triazoles as antifungal agents. Bioorganic & Medicinal Chemistry Letters, 18(11), 3261–3265. https://doi.org/10.1016/j.bmcl.2008.04.056
  • Maurya, A. K., Mulpuru, V., & Mishra, N. (2020). Discovery of novel coumarin analogs against the α-glucosidase protein target of diabetes mellitus: Pharmacophore-based QSAR, docking, and molecular dynamics simulation studies. ACS Omega. 5(50), 32234–32249. https://doi.org/10.1021/acsomega.0c03871
  • McDonnell, A. M., & Dang, C. H. (2013). Basic review of the cytochrome p450 system. Journal of the Advanced Practitioner in Oncology, 4(4), 263–268.
  • Odds, F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. The Journal of Antimicrobial Chemotherapy, 52(1), 1. https://doi.org/10.1093/jac/dkg301
  • Padmanabhan, S. (2014). Handbook of pharmacogenomics and stratified medicine. Elsevier Science.
  • Pappas, P. G., Rex, J. H., Sobel, J. D., Filler, S. G., Dismukes, W. E., Walsh, T. J., & Edwards, J. E, Infectious Diseases Society of America. (2004). Practice guidelines for the treatment of candidiasis. Clinical Infectious Diseases, 38(2), 161–189. https://doi.org/10.1086/380796
  • Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., & Schacht, A. L. (2010). How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nature Reviews. Drug Discovery, 9(3), 203–214. https://doi.org/10.1038/nrd3078
  • Pore, V. S., Aher, N. G., Kumar, M., & Shukla, P. K. (2006). Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron, 62(48), 11178–11186. https://doi.org/10.1016/j.tet.2006.09.021
  • Prakash, S. M. U., & Kabir, M. A. (2022). Repurposing vilanterol as a novel potential antifungal for Candida albicans: In-silico & in-vitro approach. Medicine in Drug Discovery, 15, 100137. https://doi.org/10.1016/j.medidd.2022.100137
  • Rafi, M. O., Bhattacharje, G., Al-Khafaji, K., Taskin-Tok, T., Alfasane, M. A., Das, A. K., Parvez, M. A. K., & Rahman, M. S. (2022). Combination of QSAR, molecular docking, molecular dynamic simulation and MM-PBSA: Analogues of lopinavir and favipiravir as potential drug candidates against COVID-19. Journal of Biomolecular Structure & Dynamics, 40(8), 3711–3730. https://doi.org/10.1080/07391102.2020.1850355
  • Rolta, R., Salaria, D., Sharma, P., Sharma, B., Kumar, V., Rathi, B., Verma, M., Sourirajan, A., Baumler, D. J., & Dev, K. (2021). Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico approach. Current Pharmacology Reports, 7(4), 135–149. https://doi.org/10.1007/s40495-021-00259-4
  • Shafiei, M., Toreyhi, H., Firoozpour, L., Akbarzadeh, T., Amini, M., Hosseinzadeh, E., Hashemzadeh, M., Peyton, L., Lotfali, E., & Foroumadi, A. (2021). Design, synthesis, and in vitro and in vivo evaluation of novel fluconazole-based compounds with promising antifungal activities. ACS Omega, 6(38), 24981–25001. https://doi.org/10.1021/acsomega.1c04016
  • Sheng, C., Wang, W., Che, X., Dong, G., Wang, S., Ji, H., Miao, Z., Yao, J., & Zhang, W. (2010). Improved model of lanosterol 14α-demethylase by ligand-supported homology modeling: Validation by virtual screening and azole optimization. ChemMedChem, 5(3), 390–397. https://doi.org/10.1002/cmdc.200900468
  • Singh, J., Sangwan, N., Chauhan, A., & Avti, P. K. (2022). Integrative network and computational simulation of clinical and genomic data for the identification of mutated EGFR in breast cancer patients for therapeutic targeting using purine analogues. Molecular Simulation, 48(17), 1548–1560. https://doi.org/10.1080/08927022.2022.2107638
  • Sliwoski, G., Kothiwale, S. K., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Wadood, A., Ahmed, N., Shah, L., Ahmad, A., Hassan, H., & Shams, S. (2013). In-silico drug design: An approach which revolutionarised the drug discovery process. OA Drug Design & Delivery, 1(1), 3.
  • Wang, S., Jin, G., Wang, W., Zhu, L., Zhang, Y., Dong, G., Liu, Y., Zhuang, C., Miao, Z., Yao, J., Zhang, W., & Sheng, C. (2012). Design, synthesis and structure–activity relationships of new triazole derivatives containing N-substituted phenoxypropylamino side chains. European Journal of Medicinal Chemistry, 53, 292–299. https://doi.org/10.1016/j.ejmech.2012.04.013
  • Wang, W., Lei, X., Ai, H. L., Bai, X., Li, J., He, J., Li, Z. H., Zheng, Y. S., Feng, T., & Liu, J. K. (2019). Cytochalasans from the endophytic fungus Xylaria cf. curta with resistance reversal activity against fluconazole-resistant Candida albicans. Organic Letters, 21(4), 1108–1111. https://doi.org/10.1021/acs.orglett.9b00015
  • Wang, E. J., Lew, K., Casciano, C. N., Clement, R. P., & Johnson, W. W. (2002). Interaction of common azole antifungals with P glycoprotein. Antimicrobial Agents and Chemotherapy, 46(1), 160–165. https://doi.org/10.1128/AAC.46.1.160-165.2002
  • Wang, W., Sheng, C., Che, X., Ji, H., Cao, Y., Miao, Z., Yao, J., & Zhang, W. (2009). Discovery of highly potent novel antifungal azoles by structure-based rational design. Bioorganic & Medicinal Chemistry Letters, 19(20), 5965–5969. https://doi.org/10.1016/j.bmcl.2009.07.144
  • Wang, Y., Xu, K., Bai, G., Huang, L., Wu, Q., Pan, W., & Yu, S. (2014). Synthesis and antifungal activity of novel triazole compounds containing piperazine moiety. Molecules (Basel, Switzerland), 19(8), 11333–11340. https://doi.org/10.3390/molecules190811333
  • Wermuth, C. G. (2006). Similarity in drugs: Reflections on analogue design. Drug Discovery Today, 11(7–8), 348–354. https://doi.org/10.1016/j.drudis.2006.02.006
  • Wishart, D. S. (2005). Bioinformatics in drug development and assessment. Drug Metabolism Reviews, 37(2), 279–310. https://doi.org/10.1081/dmr-55225
  • Xie, F., Hao, Y., Bao, J., Liu, J., Liu, Y., Wang, R., Chi, X., Chai, X., Wang, T., Yu, S., Jin, Y., Yan, L., Zhang, D., & Ni, T. (2022). Design, synthesis, and in vitro evaluation of novel antifungal triazoles containing substituted 1,2,3-triazole-methoxyl side chains. Bioorganic Chemistry, 129, 106216. https://doi.org/10.1016/j.bioorg.2022.106216
  • Yin, W., Zhang, Y., Cui, H., Jiang, H., Liu, L., Zheng, Y., Wu, T., Zhao, L., Sun, Y., Su, X., Li, S., Zhao, D., & Cheng, M. (2021). Design, synthesis and evaluation of novel 5-phenylthiophene derivatives as potent fungicidal of Candida albicans and antifungal reagents of fluconazole-resistant fungi. European Journal of Medicinal Chemistry, 225, 113740. https://doi.org/10.1016/j.ejmech.2021.113740

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.