217
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A comprehensive examination of ACE2 receptor and prediction of spike glycoprotein and ACE2 interaction based on in silico analysis of ACE2 receptor

ORCID Icon & ORCID Icon
Pages 4412-4428 | Received 12 Feb 2023, Accepted 28 May 2023, Published online: 22 Jun 2023

References

  • Ahmad, S., Waheed, Y., Abro, A., Abbasi, S. W., & Ismail, S. (2021). Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2. Journal of Molecular Modeling, 27(7), 1–13. https://doi.org/10.1007/s00894-021-04816-y
  • Ahmed, M., Ahmad, S., Raza, M. A., Kumar, U., Ansar, M., Shah, G. A., …Parsons, D., Hoogenboom, G., Palosuo, T., & Seidel, S. (2020). Models calibration and evaluation. In Systems mmodeling, (pp. 151–178).
  • Aktas, E. (2021). Bioinformatics analysis unveils certain mutations implicated in spike structure damage and ligand-binding site of severe acute respiratory syndrome coronavirus 2. Bioinformatics and Biology Insights, 15, 117793222110182. https://doi.org/10.1177/11779322211018200
  • Aktas, E., Korcan, E., Ozdemir Ozgenturk, N., & Erismis, U. C. (2021). Bioinformatic analysis reveals that some bacteria may aid SARS–COV-2 spread and entry into host cells. Sigma Journal of Engineering and Natural Sciences, 39(3), 248–259.
  • Albini, A., Di Guardo, G., Noonan, D. M., & Lombardo, M. (2020). The SARS-CoV-2 receptor, ACE2, is expressed on many different cell types: Implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies. Internal and Emergency Medicine, 15(5), 759–766. https://doi.org/10.1007/s11739-020-02364-6
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408
  • Ashworth, J., Taylor, K., Kinyanjui, A., Sivley, R. M., & Wong-Barnum, M. (2016). Identification of protein–ligand binding sites using the iMODS server. Journal of Molecular Graphics and Modelling, 70, 8–15.
  • Belouzard, S., Chu, V. C., & Whittaker, G. R. (2009). Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5871–5876. https://doi.org/10.1073/pnas.0809524106
  • Bojkova, D., Widera, M., Ciesek, S., Wass, M. N., Michaelis, M., & Cinatl, J. (2022). Reduced interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta variant of SARS-CoV-2 isolates. Cell Research, 32(3), 319–321. https://doi.org/10.1038/s41422-022-00619-9
  • Can, H., Köseoğlu, A. E., Erkunt Alak, S., Güvendi, M., Döşkaya, M., Karakavuk, M., Gürüz, A. Y., & Ün, C. (2020). In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19. Scientific Reports, 10(1), 22387. https://doi.org/10.1038/s41598-020-79645-9
  • Capra, J. A., & Singh, M. (2007). Predicting functionally important residues from sequence conservation. Bioinformatics (Oxford, England), 23(15), 1875–1882. https://doi.org/10.1093/bioinformatics/btm270
  • Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. mutations in proteins. BMC Genomics, 14(Suppl 3), S2. https://doi.org/10.1186/1471-2164-14-S3-S2
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics (Oxford, England), 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue), W306–W310. https://doi.org/10.1093/nar/gki375
  • Case, et al. (2021). AMBER 2021. University of California.
  • Chan-Yeung, M., & Yu, W. C. (2003). Outbreak of severe acute respiratory syndrome in Hong Kong Special Administrative Region: A case report. BMJ (Clinical Research ed.), 326(7394), 850–852. https://doi.org/10.1136/bmj.326.7394.850
  • Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research. 33(Web Server), W72–W76. https://doi.org/10.1093/nar/gki396
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics (Oxford, England), 31(16), 2745–2747. volume https://doi.org/10.1093/bioinformatics/btv195
  • Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012). Predicting the functional effect of amino acid substitutions and indels. PLoS One, 7(10), e46688. https://doi.org/10.1371/journal.pone.0046688
  • Dangi, M., Kumari, R., Singh, B., & Chhillar, A. K. (2018). Advanced in silico tools for designing of antigenic epitope as potential vaccine candidates against coronavirus. In A. Shanker (Ed.), Bioinformatics: Sequences, structures, phylogeny (pp. 329–357). Springer.
  • Debret, G., Martel, A., & Cuniasse, P. (2009). RASMOT-3D PRO: A 3D motif search webserver. Nucleic Acids Research, 37(Web Server issue), W459–W464. https://doi.org/10.1093/nar/gkp304
  • Deep, A., Tiwari, P., Agarwal, S., Kaundal, S., Kidwai, S., Singh, R., & Thakur, K. G. (2018). Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin–antitoxin system: Targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Research, 46(21), 11639–11655. https://doi.org/10.1093/nar/gky924
  • Droppa-Almeida, D., Franceschi, E., & Padilha, F. F. (2018). Immune-informatic analysis and design of peptide vaccine from multi-epitopes against Corynebacterium pseudotuberculosis. Bioinformatics and Biology Insights, 12, 1177932218755337. https://doi.org/10.1177/1177932218755337
  • Dudenhoeffer, B. R., Schneider, H., Schweimer, K., & Knauer, S. H. (2019). SuhB is an integral part of the ribosomal antitermination complex and interacts with NusA. Nucleic Acids Research, 47(12), 6504–6518. https://doi.org/10.1093/nar/gkz442
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identifcation and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). Springer. https://doi.org/10.1385/1-59259-890-0:571
  • Gause, K. T., Wheatley, A. K., Cui, J., Yan, Y., Kent, S. J., & Caruso, F. (2017). Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano, 11(1), 54–68. https://doi.org/10.1021/acsnano.6b07343
  • Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J.-C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circulation Research, 126(10), 1456–1474. https://doi.org/10.1161/CIRCRESAHA.120.317015
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA Data Mining Software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18. https://doi.org/10.1145/1656274.1656278
  • Hayat, C., Shahab, M., Khan, S. A., Liang, C., Duan, X., Khan, H., Zheng, G., & Ul-Haq, Z. (2022). Design of a novel multiple epitope-based vaccines: An immunoinformatics approach to combat monkeypox. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2022.2141887
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitör. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Hoshino, Y., Koide, H., Furuya, K., Haberaecker, W. W., Lee, S.-H., Kodama, T., Kanazawa, H., Oku, N., & Shea, K. J. (2012). The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proceedings of the National Academy of Sciences of the United States of America, 109(1), 33–38. https://doi.org/10.1073/pnas.1112828109
  • Huang, S.-Y. (2014). Search strategies and evaluation in protein–protein docking: Principles, advances and challenges. Drug Discovery Today, 19(8), 1081–1096. https://doi.org/10.1016/j.drudis.2014.02.005
  • Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
  • Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., Zumla, A., & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - the latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases : IJID, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009
  • Isik, M., Fenwick, M., & Chacon, P. (2021). Protein conformational dynamics by normal mode analysis. In Protein structure prediction (pp. 3–15). Humana.
  • Ji, H., Wang, J., Guo, J., Li, Y., Lian, S., Guo, W., Yang, H., Kong, F., Zhen, L., Guo, L., & Liu, Y. (2016). Progress in the biological function of alpha-enolase. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui), 2(1), 12–17. volume https://doi.org/10.1016/j.aninu.2016.02.005
  • Käll, L., Krogh, A., & Sonnhammer, E. L. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Research, 35(Web Server issue), W429–32. https://doi.org/10.1093/nar/gkm256
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kessel, A., & Ben-Tal, N. (2010). Introduction to proteins: Structure, function, and motion. CRC Press.
  • Khan, S., & Vihinen, M. (2010). Performance of protein stability predictors. Human Mutation, 31(6), 675–684. https://doi.org/10.1002/humu.21242
  • Khurana, E., Fu, Y., Chakravarty, D., Demichelis, F., Rubin, M. A., & Gerstein, M. (2016). Role of non-coding sequence variants in cancer. Nature Reviews. Genetics, 17(2), 93–108. https://doi.org/10.1038/nrg.2015.17
  • Kiel, C., Serrano, L., & Fields, S. (2009). Genome-wide analysis of protein-protein interactions integrating interactome, domain, and motif data. Nature Methods, 6(1), 106.
  • Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins, 81(12), 2159–2166. https://doi.org/10.1002/prot.24403
  • Koźmiński, P., Halik, P. K., Chesori, R., & Gniazdowska, E. (2020). Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. International Journal of Molecular Sciences, 21(10), 3483. https://doi.org/10.3390/ijms21103483
  • Kreuzberger, N., Hirsch, C., Chai, K. L., Tomlinson, E., Khosravi, Z., Popp, M., Neidhardt, M., Piechotta, V., Salomon, S., Valk, S. J., Monsef, I., Schmaderer, C., Wood, E. M., So-Osman, C., Roberts, D. J., McQuilten, Z., Estcourt, L. J., & Skoetz, N. (2021). SARS‐CoV‐2‐neutralising monoclonal antibodies for treatment of COVID‐19. Cochrane Database of Systematic Reviews, 2021(9), 1465-1858. https://doi.org/10.1002/14651858.CD013825.pub2
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Lensink, M. F., Brysbaert, G., Nadzirin, N., Velankar, S., Chaleil, R. A. G., Gerguri, T., Bates, P. A., Laine, E., Carbone, A., Grudinin, S., Kong, R., Liu, R.-R., Xu, X.-M., Shi, H., Chang, S., Eisenstein, M., Karczynska, A., Czaplewski, C., Lubecka, E., … Wodak, S. J. (2019). Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment. Proteins, 87(12), 1200–1221. https://doi.org/10.1002/prot.25838
  • Li, X., Molina-Molina, M., Abdul-Hafez, A., Uhal, V., Xaubet, A., & Uhal, B. D. (2008). Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295(1), L178–85. https://doi.org/10.1152/ajplung.00009.2008
  • Linden, R. (2017). The biological function of the prion protein: A cell surface scaffold of signaling modules. Frontiers in Molecular Neuroscience, 10, 77. https://doi.org/10.3389/fnmol.2017.00077
  • Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., & Russell, R. B. (2003). Protein disorder prediction: Implications for structural proteomics. Structure, 11(11), 1453–1459. https://doi.org/10.1016/j.str.2003.10.002
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–6. https://doi.org/10.1093/nar/gku339
  • Mannini, B., Mulvihill, E., Sgromo, C., Cascella, R., Khodarahmi, R., Ramazzotti, M., Dobson, C. M., Cecchi, C., & Chiti, F. (2014). Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chemical Biology, 9(10), 2309–2317. https://doi.org/10.1021/cb500505m
  • Marzolini, C., Kuritzkes, D. R., Marra, F., Boyle, A., Gibbons, S., Flexner, C., Pozniak, A., Boffito, M., Waters, L., Burger, D., Back, D., & Khoo, S. (2022). Prescribing nirmatrelvir–ritonavir: How to recognize and manage drug–drug interactions. Annals of Internal Medicine, 175(5), 744–746. https://doi.org/10.7326/M22-0281
  • Mendes, J., & Serrano, L. (2017). Protein moonlighting: A new layer in protein function. Nature Reviews Molecular Cell Biology, 18(11), 586.
  • Meunier, M., Guyard-Nicodème, M., Hirchaud, E., Parra, A., Chemaly, M., & Dory, D. (2016). Identifcation of novel vaccine candidates against campylobacter through reverse vaccinology. Journal of Immunology Research, 2016, 5715790. https://doi.org/10.1155/2016/5715790
  • Mi, H., Muruganujan, A., & Thomas, P. D. (2013). PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research, 41(Database issue), D377–D386. https://doi.org/10.1093/nar/gks1118
  • Musarrat, F., Chouljenko, V., Dahal, A., Nabi, R., Chouljenko, T., Jois, S. D., & Kousoulas, K. G. (2020). The anti‐HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV‐2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID‐19 infections. Journal of Medical Virology, 92(10), 2087–2095. https://doi.org/10.1002/jmv.25985
  • Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/s12551-016-0247-1
  • Pang, X., Cui, Y., & Zhu, Y. (2020). Recombinant human ACE2: Potential therapeutics of SARS-CoV-2 infection and its complication. Acta Pharmacologica Sinica, 41(9), 1255–1257. https://doi.org/10.1038/s41401-020-0430-6
  • Parvizpour, S., Pourseif, M. M., Razmara, J., Rafi, M. A., & Omidi, Y. (2020). Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discovery Today, 25(6), 1034–1042. https://doi.org/10.1016/j.drudis.2020.03.006
  • Petruk, G., Puthia, M., Petrlova, J., Samsudin, F., Strömdahl, A.-C., Cerps, S., Uller, L., Kjellström, S., Bond, P. J., & Schmidtchen, A. A. (2020). SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. Journal of Molecular Cell Biology, 12(12), 916–932. https://doi.org/10.1093/jmcb/mjaa067
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Qaradakhi, T., Gadanec, L. K., McSweeney, K. R., Tacey, A., Apostolopoulos, V., Levinger, I., Rimarova, K., Egom, E. E., Rodrigo, L., Kruzliak, P., Kubatka, P., & Zulli, A. (2020). The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clinical and Experimental Pharmacology & Physiology, 47(5), 751–758. https://doi.org/10.1111/1440-1681.13251
  • Rashid, M. I., Rehman, S., Ali, A., & Andleeb, S. (2019). Fishing for vaccines against Vibrio cholerae using in silico pan-proteomic reverse vaccinology approach. PeerJ, 7, e6223. https://doi.org/10.7717/peerj.6223
  • Ren, W., Lan, J., Ju, X., Gong, M., Long, Q., Zhu, Z., Yu, Y., Wu, J., Zhong, J., Zhang, R., Fan, S., Zhong, G., Huang, A., Wang, X., & Ding, Q. (2021). Mutation Y453F in the spike protein of SARS-CoV-2 enhances interaction with the mink ACE2 receptor for host adaption. PLoS Pathogens, 17(11), e1010053. https://doi.org/10.1371/journal.ppat.1010053
  • Ryan, K. N., Zhong, Q., & Foegeding, E. A. (2013). Use of whey protein soluble aggregates for thermal stability—A hypothesis paper. Journal of Food Science, 78(8), R1105–R1115. https://doi.org/10.1111/1750-3841.12207
  • Sendi, P., Razonable, R. R., Nelson, S. B., Soriano, A., & Gandhi, R. T. (2022). First-generation oral antivirals against SARS-CoV-2. Clinical Microbiology and Infection, 28(9), 1230–1235. https://doi.org/10.1016/j.cmi.2022.04.015
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L., & Souopgui, J. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related flarial diseases. Scientific Reports, 9(1), 4409. https://doi.org/10.1038/s41598-019-40833-x
  • Tang, H., & Thomas, P. D. (2016). PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics (Oxford, England), 32(14), 2230–2232. https://doi.org/10.1093/bioinformatics/btw222
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2020). ff19SB: Amino-Acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Vegivinti, C. T. R., Evanson, K. W., Lyons, H., Akosman, I., Barrett, A., Hardy, N., Kane, B., Keesari, P. R., Pulakurthi, Y. S., Sheffels, E., Balasubramanian, P., Chibbar, R., Chittajallu, S., Cowie, K., Karon, J., Siegel, L., Tarchand, R., Zinn, C., Gupta, N., … Touchette, J. (2022). Efficacy of antiviral therapies for COVID-19: A systematic review of randomized controlled trials. BMC Infectious Diseases, 22(1), 1–45. https://doi.org/10.1186/s12879-022-07068-0
  • Venselaar, H., Te Beek, T. A. H., Kuipers, R. K. P., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11, 548. https://doi.org/10.1186/1471-2105-11-548
  • Vincent, M., & Schnell, S. (2019). Disorder Atlas: Web-based software for the proteome-based interpretation of intrinsic disorder predictions. Computational Biology and Chemistry, 83, 107090. https://doi.org/10.1016/j.compbiolchem.2019.107090
  • Vincent, M., Uversky, V. N., & Schnell, S. (2019). On the need to develop guidelines for characterizing and reporting intrinsic disorder in proteins. Proteomics, 19(6), e1800415. https://doi.org/10.1002/pmic.201800415
  • Wang, J., Zhao, H., & An, Y. (2022). ACE2 shedding and the role in COVID-19. Frontiers in Cellular and Infection Microbiology, 11, 1422. https://doi.org/10.3389/fcimb.2021.789180
  • Wittmund, M., Cadet, F., & Davari, M. D. (2022). Learning epistasis and residue coevolution patterns: Current trends and future perspectives for advancing enzyme engineering. ACS Catalysis, 12(22), 14243–14263. https://doi.org/10.1021/acscatal.2c01426
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wright, P. E., & Dyson, H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews. Molecular Cell Biology, 16(1), 18–29. https://doi.org/10.1038/nrm3920
  • Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet (London, England), 395(10225), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yan, Y., Tao, H., He, J., & Huang, S.-Y. (2020). The HDOCK server for integrated protein-protein docking. Nature Protocols, 15(5), 1829–1852. https://doi.org/10.1038/s41596-020-0312-x
  • Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences of United States of America, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117
  • Yang, P., Gu, H., Zhao, Z., Wang, W., Cao, B., Lai, C., Yang, X., Zhang, L., Duan, Y., Zhang, S., Chen, W., Zhen, W., Cai, M., Penninger, J. M., Jiang, C., & Wang, X. (2014). Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Scientific Reports, 4, 7027. https://doi.org/10.1038/srep07027
  • Zhang, H., & Baker, A. (2017). Recombinant human ACE2: Acing out angiotensin II in ARDS therapy. Critical Care, 21(1), 305. https://doi.org/10.1186/s13054-017-1882-z
  • Zou, Z., Yan, Y., Shu, Y., Gao, R., Sun, Y., Li, X., Ju, X., Liang, Z., Liu, Q., Zhao, Y., Guo, F., Bai, T., Han, Z., Zhu, J., Zhou, H., Huang, F., Li, C., Lu, H., Li, N., … Jiang, C. (2014). Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nature Communications, 5, 3594. https://doi.org/10.1038/ncomms4594

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.