420
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

New sulfonamide derivatives based on 1,2,3-triazoles: synthesis, in vitro biological activities and in silico studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4782-4799 | Received 02 Feb 2023, Accepted 02 Jun 2023, Published online: 15 Jun 2023

References

  • Şahin, İ., Çeşme, M., Özgeriş, F. B., & Tümer, F. (2023). Triazole based novel molecules as potential therapeutic agents: Synthesis, characterization, biological evaluation, in-silico ADME profiling and molecular docking studies. Chemico-Biological Interactions, 370, 110312. https://doi.org/10.1016/J.CBI.2022.110312
  • Şahin, İ., Çeşme, M., Yüce, N., & Tümer, F. (2022b). Discovery of new 1,4-disubstituted 1,2,3-triazoles: In silico ADME profiling, molecular docking and biological evaluation studies. Journal of Biomolecular Structure and Dynamics, 41(5), 1988–2001. https://doi.org/10.1080/07391102.2022.2025905
  • Şahin, İ., Özgeriş, F. B., Köse, M., Bakan, E., & Tümer, F. (2021). Synthesis, characterization, and antioxidant and anticancer activity of 1,4-disubstituted 1,2,3-triazoles. Journal of Molecular Structure, 1232, 130042. https://doi.org/10.1016/j.molstruc.2021.130042
  • Anand, P., & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacal Research, 36(4), 375–399. https://doi.org/10.1007/S12272-013-0036-3
  • Aziz Ali, A. (2021). 1,2,3-Triazoles: Synthesis and biological application. In Azoles - synthesis, properties, applications and perspectives (vol. i, p.13). IntechOpen. https://doi.org/10.5772/intechopen.92692
  • Bag, S., Tulsan, R., Sood, A., Cho, H., Redjeb, H., Zhou, W., Levine, H., Török, B., & Török, M. (2015). Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, 25(3), 626–630. https://doi.org/10.1016/J.BMCL.2014.12.006
  • Begum, F., Rehman, N. U., Khan, A., Iqbal, S., Paracha, R. Z., Uddin, J., Al-Harrasi, A., & Lodhi, M. A. (2022). 2-Mercaptobenzimidazole clubbed hydrazone for Alzheimer’s therapy: In vitro, kinetic, in silico, and in vivo potentials. Frontiers in Pharmacology, 13, 946134. https://doi.org/10.3389/fphar.2022.946134
  • Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G., & Passarella, D. (2017). The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discovery Today, 22(10), 1572–1581. https://doi.org/10.1016/j.drudis.2017.05.014
  • Bozorov, K., Zhao, J., & Aisa, H. A. (2019). 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorganic & Medicinal Chemistry, 27(16), 3511–3531. https://doi.org/10.1016/j.bmc.2019.07.005
  • Casini, A., Scozzafava, A., Mastrolorenzo, A., & Supuran, C. (2002). Sulfonamides and sulfonylated derivatives as anticancer agents. Current Cancer Drug Targets, 2(1), 55–75. https://doi.org/10.2174/1568009023334060
  • Çeşme, M. (2023). 2-Aminophenol-based ligands and Cu(II) complexes: Synthesis, characterization, X-ray structure, thermal and electrochemical properties, and in vitro biological evaluation, ADMET study and molecular docking simulation. Journal of Molecular Structure, 1271, 134073. https://doi.org/10.1016/j.molstruc.2022.134073
  • Çot, A., Betül Özgeriş, F., Şahin, İ., Çeşme, M., Onur, S., & Tümer, F. (2022). Synthesis, characterization, antioxidant and anticancer activity of new hybrid structures based on diarylmethanol and 1,2,3-triazole. Journal of Molecular Structure, 1269, 133763. https://doi.org/10.1016/j.molstruc.2022.133763
  • Çot, A., Çeşme, M., Onur, S., Aksakal, E., Şahin, İ., & Tümer, F. (2022). Rational design of 1,2,3-triazole hybrid structures as novel anticancer agents: Synthesis, biological evaluation and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2022.2112620
  • Cunha, A. C., Jordão, A. K., de Souza, M. C. B. V., Ferreira, V. F., de Almeida, M. C. B., Wardell, J. L., & Tiekink, E. R. T. (2016). 1-Anilino-5-methyl-1 H -1,2,3-triazole-4-carbaldehyde. IUCrData, 1(1), x160038. https://doi.org/10.1107/S2414314616000389/ZQ4001ISUP3.CML
  • Daina, A., & Zoete, V. (2016). A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dalvie, D. K., Kalgutkar, A. S., Khojasteh-Bakht, S. C., Obach, R. S., & O'Donnell, J. P. (2002). Biotransformation reactions of five-membered aromatic heterocyclic rings. Chemical Research in Toxicology, 15(3), 269–299. https://doi.org/10.1021/tx015574b
  • Davis, T. (1976). Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 2(8000),1403. https://doi.org/10.1016/s0140-6736(76)91936-x
  • De Nisi, A., Bergamini, C., Leonzio, M., Sartor, G., Fato, R., Naldi, M., Monari, M., Calonghi, N., & Bandini, M. (2016). Synthesis, cytotoxicity and anti-cancer activity of new alkynyl-gold(i) complexes. Dalton Transactions (Cambridge, England : 2003), 45(4), 1546–1553. https://doi.org/10.1039/C5DT02905H
  • Duan, Y. C., Zheng, Y. C., Li, X. C., Wang, M. M., Ye, X. W., Guan, Y. Y., Liu, G. Z., Zheng, J. X., & Liu, H. M. (2013). Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole-dithiocarbamate-urea hybrids. European Journal of Medicinal Chemistry, 64, 99–110. https://doi.org/10.1016/j.ejmech.2013.03.058
  • Eggler, J. F. (1995). Benzisothiazoles derivatives as inhibitors of 5-lipoxygenase biosynthesis.
  • Genç, Y., Özkanca, R., & Bekdemir, Y. (2008). Antimicrobial activity of some sulfonamide derivatives on clinical isolates of Staphylococus aureus. Annals of Clinical Microbiology and Antimicrobials, 7, 17. https://doi.org/10.1186/1476-0711-7-17
  • Ghosh, S., Jana, K., Wakchaure, P. D., & Ganguly, B. (2022). Revealing the cholinergic inhibition mechanism of Alzheimer’s by galantamine: A metadynamics simulation study. Journal of Biomolecular Structure & Dynamics, 40(11), 5100–5111. https://doi.org/10.1080/07391102.2020.1867644/SUPPL_FILE/TBSD_A_1867644_SM7098.PDF
  • Giacobini, E. (2001). Selective inhibitors of butyrylcholinesterase: A valid alternative for therapy of Alzheimer’s disease? Drugs & Aging, 18(12), 891–898. https://doi.org/10.2165/00002512-200118120-00001
  • Giacobini, E. (2004). Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacological Research, 50(4), 433–440. https://doi.org/10.1016/J.PHRS.2003.11.017
  • Hamedi, A., Zengin, G., Aktumsek, A., Selamoglu, Z., & Pasdaran, A. (2020). In vitro and in silico approach to determine neuroprotective properties of iridoid glycosides from aerial parts of Scrophularia amplexicaulis by investigating their cholinesterase inhibition and anti-oxidant activities. Biointerface Research in Applied Chemistry, 10(3), 5429–5454. https://doi.org/10.33263/BRIAC103.429454
  • Horne, W. S., Yadav, M. K., Stout, C. D., & Ghadiri, M. R. (2004). Heterocyclic peptide backbone modifications in an r-helical coiled coil. Journal of the American Chemical Society, 126(47), 15366–15367. https://doi.org/10.1021/ja0450408
  • Hung, N. H., Quan, P., Satyal, M., Dai, P., Hoa, D. N., van, V., Huy, N. G., Giang, L. D., Ha, N. T., Huong, L. T., Hien, V. T., & Setzer, W. N. (2022). Acetylcholinesterase inhibitory activities of essential oils from vietnamese traditional medicinal plants. Molecules, 27(20), 7092. https://doi.org/10.3390/molecules27207092
  • Isika, D. K., Özkömeç, F. N., Çeşme, M., & Sadik, O. A. (2022). Synthesis, biological and computational studies of flavonoid acetamide derivatives. RSC Advances, 12(16), 10037–10050. https://doi.org/10.1039/d2ra01375d
  • Kamal, A., Shankaraiah, N., Devaiah, V., Laxma Reddy, K., Juvekar, A., Sen, S., Kurian, N., & Zingde, S. (2008). Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing “click” chemistry: DNA-binding affinity and anticancer activity. Bioorganic & Medicinal Chemistry Letters, 18(4), 1468–1473. https://doi.org/10.1016/j.bmcl.2007.12.063
  • Kar, S., & Leszczynski, J. (2020). Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opinion on Drug Discovery, 15(12), 1473–1487. https://doi.org/10.1080/17460441.2020.1798926
  • Khalid, S., Zahid, M. A., Ali, H., Kim, Y. S., & Khan, S. (2018). Biaryl scaffold-focused virtual screening for anti-aggregatory and neuroprotective effects in Alzheimer’s disease. BMC Neuroscience, 19(1), 74. https://doi.org/10.1186/s12868-018-0472-6
  • Köksal, Z., Alım, Z., Bayrak, S., Gülçin, İ., & Özdemir, H. (2019). Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. Journal of Biochemical and Molecular Toxicology, 33(5), e22300. https://doi.org/10.1002/jbt.22300
  • Kołaczek, A., Fusiarz, I., Ławecka, J., & Branowska, D. (2014). Biological activity and synthesis of sulfonamide derivatives: A brief review. Chemik, 68, 620–628.
  • Kung, H. F., Lee, C. W., Zhuang, Z. P., Kung, M. P., Hou, C., & Plössl, K. (2001). Novel stilbenes as probes for amyloid plaques. Journal of the American Chemical Society, 123(50), 12740–12741. https://doi.org/10.1021/JA0167147/SUPPL_FILE/JA0167147_S2.PDF
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, C. J., Liu, Y. P., Yu, S. L., Dai, X. J., Zhang, T., & Tao, J. C. (2016). Syntheses, cytotoxic activity evaluation and HQSAR study of 1,2,3-triazole-linked isosteviol derivatives as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters, 26(22), 5455–5461. https://doi.org/10.1016/j.bmcl.2016.10.028
  • Luo, W., Chen, Y., Wang, T., Hong, C., Chang, L. P., Chang, C. C., Yang, Y. C., Xie, S. Q., & Wang, C. J. (2016). Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorganic & Medicinal Chemistry, 24(4), 672–680. https://doi.org/10.1016/j.bmc.2015.12.031
  • Makarian, M., Gonzalez, M., Salvador, S. M., Lorzadeh, S., Hudson, P. K., & Pecic, S. (2022). Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitors HHS Public Access. Journal of Molecular Structure. 1247, 131425. https://doi.org/10.1016/j.molstruc.2021.131425
  • Malani, A. H., Makwana, A. H., & Makwana, H. (2017). A brief review article: Various synthesis and therapeutic importance of 1,2,4-triazole and its derivatives. Moroccan Journal of Chemistry, 5(1), 41–58.
  • Martin Prince, A., Wimo, A., Guerchet, M., Gemma-Claire Ali, M., Wu, Y.-T., Prina, M., Yee Chan, K., & Xia, Z. (2015). World Alzheimer Report 2015 The Global Impact of Dementia An AnAlysIs of prevAlence, IncIDence, cosT AnD TrenDs. www.alz.co.uk/worldreport2015corrections.
  • Orhan, I. E., Senol Deniz, F. S., Traedal-Henden, S., Cerón-Carrasco, J. P., den Haan, H., Peña-García, J., Pérez-Sánchez, H., Emerce, E., & Skalicka-Wozniak, K. (2019). Profiling auspicious butyrylcholinesterase inhibitory activity of two herbal molecules: Hyperforin and Hyuganin C. Chemistry & Biodiversity, 16(5), e1900017. https://doi.org/10.1002/CBDV.201900017
  • Penthala, N. R., Madhukuri, L., Thakkar, S., Madadi, N. R., Lamture, G., Eoff, R. L., & Crooks, P. A. (2015). Synthesis and anti-cancer screening of novel heterocyclic-(2H)- 1,2,3-triazoles as potential anti-cancer agents. MedChemComm, 6(8), 1535–1543. https://doi.org/10.1039/C5MD00219B
  • Perlovich, G. L., Ryzhakov, A. M., Tkachev, V. V., Hansen, L. K., & Raevsky, O. A. (2013). Sulfonamide molecular crystals: Structure, sublimation thermodynamic characteristics, molecular packing, hydrogen bonds networks. Crystal Growth & Design, 13(9), 4002–4016. https://doi.org/10.1021/cg400666v
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Raina, P., Santaguida, P., Ismaila, A., Patterson, C., Cowan, D., Levine, M., Booker, L., & Oremus, M. (2008). Effectiveness of cholinesterase inhibitors and memantine for treating dementia: Evidence review for a clinical practice guideline. Annals of Internal Medicine, 148(5), 379–397. https://doi.org/10.7326/0003-4819-148-5-200803040-00009
  • Reedijk, J. (1996). Improved understanding in platinium antitumour chemistry. Chemical Communications, 7(7), 801. https://doi.org/10.1039/cc9960000801
  • Şahin, İ., Çeşme, M., Özgeriş, F. B., Güngör, Ö., & Tümer, F. (2022a). Design and synthesis of 1,4-disubstituted 1,2,3-triazoles: Biological evaluation, in silico molecular docking and ADME screening. Journal of Molecular Structure, 1247, 131344. https://doi.org/10.1016/j.molstruc.2021.131344
  • Santos, M. A., Marques, S. M., Tuccinardi, T., Carelli, P., Panelli, L., & Rossello, A. (2006). Design, synthesis and molecular modeling study of iminodiacetyl monohydroxamic acid derivatives as MMP inhibitors. Bioorganic & Medicinal Chemistry, 14(22), 7539–7550. https://doi.org/10.1016/j.bmc.2006.07.011
  • Singla, S., & Piplani, P. (2016). Coumarin derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies. Bioorganic & Medicinal Chemistry, 24(19), 4587–4599. https://doi.org/10.1016/j.bmc.2016.07.061
  • Stefely, J. A., Palchaudhuri, R., Miller, P. A., Peterson, R. J., Moraski, G. C., Hergenrother, P. J., & Miller, M. J. (2010). N -((1-benzyl-1 H -1,2,3-triazol-4-yl)methyl)arylamide as a new scaffold that provides rapid access to antimicrotubule agents: Synthesis and evaluation of antiproliferative activity against select cancer cell lines. Journal of Medicinal Chemistry, 53(8), 3389–3395. https://doi.org/10.1021/jm1000979
  • Turkan, F., Cetin, A., Taslimi, P., & Gulçin, İ. (2018). Some pyrazoles derivatives: Potent carbonic anhydrase, α-glycosidase, and cholinesterase enzymes inhibitors. Archiv der Pharmazie, 351(10), 1800200. (https://doi.org/10.1002/ardp.201800200
  • Wan, H. (2013). What ADME tests should be conducted for preclinical studies? ADMET & DMPK, 1(3), 19–28. https://doi.org/10.5599/admet.1.3.9
  • Yeşilkaynak, T., Özkömeç, F. N., Çeşme, M., Demirdöğen, R. E., Kutlu, E., Kutlu, H. M., & Emen, F. M. (2022). Synthesis of new thiourea derivatives and metal complexes: Thermal behavior, biological evaluation, in silico ADMET profiling and molecular docking studies. Journal of Molecular Structure, 1269, 133758. https://doi.org/10.1016/j.molstruc.2022.133758

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.