210
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico discovery of potent and selective Janus kinase 3 (JAK3) inhibitors through 3D-QSAR, covalent docking, ADMET analysis, molecular dynamics simulations, and binding free energy of pyrazolopyrimidine derivatives

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 4817-4833 | Received 21 Mar 2023, Accepted 02 Jun 2023, Published online: 20 Jun 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • ACD/Labs. (2018). ACD/ChemSketch Freeware. https://www.acdlabs.com/resources/freeware/chemsketch/
  • Bahmani, A., Tanzadehpanah, H., Hosseinpour Moghadam, N., & Saidijam, M. (n.d). Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-{QSAR} and docking methods. Molecular Diversity, 25(2), 949–965. https://doi.org/10.1007/s11030-020-10080-8
  • Bianco, G., Forli, S., Goodsell, D. S., & Olson, A. J. (2016). Covalent docking using autodock: Two-point attractor and flexible side chain methods. Protein Science: A Publication of the Protein Society, 25(1), 295–301. https://doi.org/10.1002/pro.2733
  • Carrión, M., Frommer, K. W., Pérez-García, S., Müller-Ladner, U., Gomariz, R. P., & Neumann, E. (2019). The adipokine network in rheumatic joint diseases. International Journal of Molecular Sciences, 20(17), 4091. https://doi.org/10.3390/ijms20174091
  • Chrencik, J. E., Patny, A., Leung, I. K., Korniski, B., Emmons, T. L., Hall, T., Weinberg, R. A., Gormley, J. A., Williams, J. M., Day, J. E., Hirsch, J. L., Kiefer, J. R., Leone, J. W., Fischer, H. D., Sommers, C. D., Huang, H.-C., Jacobsen, E. J., Tenbrink, R. E., Tomasselli, A. G., & Benson, T. E. (2010). Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. Journal of Molecular Biology, 400(3), 413–433. doi: 10.1016/j.jmb.2010.05.045
  • Clark, M., Cramer, R. D., & Van Opdenbosch, N. (1989). Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry, 10(8), 982–1012. https://doi.org/10.1002/jcc.540100804
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dassault Systèmes BIOVIA. (2019). BIOVIA discovery studio. https://discover.3ds.com/discovery-studio/
  • De Falco, V., Carlomagno, F., Li, H., & Santoro, M. (2017). The molecular basis for {RET} tyrosine-kinase inhibitors in thyroid cancer. Best Practice & Research. Clinical Endocrinology & Metabolism, 31(3), 307–318. https://doi.org/10.1016/j.beem.2017.04.013
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Entezari Heravi, Y., Sereshti, H., Saboury, A. A., Ghasemi, J., Amirmostofian, M., & Supuran, C. T. (2017). 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole–benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 688–700. https://doi.org/10.1080/14756366.2016.1241781
  • Feng, X. (2013). Study on numbers of multi-tooth meshing teeth pairs for involute internal gear pairs with small tooth number difference. Advanced Materials Research, 655-657(Cmc), 578–585. https://doi.org/10.4028/www.scientific.net/AMR.655-657.578
  • Ferreira, L. L. G., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Ferrer, A. M., Zamora, M. A., Chiva, L. M., Pascual, E. V., García, D. Y., & Sancho, J. J. A. (2018). Tofacitinib, una nueva molécula en el tratamiento de la artritis reumatoide. Revista de la SVR: Sociedad Valenciana de Reumatología, 7(3), 12–18.
  • Flanagan, M. E., Blumenkopf, T. A., Brissette, W. H., Brown, M. F., Casavant, J. M., Shang-Poa, C., Doty, J. L., Elliott, E. A., Fisher, M. B., Hines, M., Kent, C., Kudlacz, E. M., Lillie, B. M., Magnuson, K. S., McCurdy, S. P., Munchhof, M. J., Perry, B. D., Sawyer, P. S., Strelevitz, T. J., … Changelian, P. S. (2010). Discovery of CP-690,550: A potent and selective janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. Journal of Medicinal Chemistry, 53(24), 8468–8484. https://doi.org/10.1021/jm1004286
  • Fleischmann, R. (2017). A review of tofacitinib efficacy in rheumatoid arthritis patients who have had an inadequate response or intolerance to methotrexate. Expert Opinion on Pharmacotherapy, 18(14), 1525–1533. https://doi.org/10.1080/14656566.2017.1370453
  • Forster, M., Gehringer, M., & Laufer, S. A. (2017). Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorganic & Medicinal Chemistry Letters, 27(18), 4229–4237. https://doi.org/10.1016/j.bmcl.2017.07.079
  • Fouedjou, R. T., Chtita, S., Bakhouch, M., Belaidi, S., Ouassaf, M., Djoumbissie, L. A., Tapondjou, L. A., & Abul Qais, F. (2022). Cameroonian medicinal plants as potential candidates of SARS-CoV-2 inhibitors. Journal of Biomolecular Structure & Dynamics, 40(19), 8615–8629. https://doi.org/10.1080/07391102.2021.1914170
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Guo, Y., Zou, Y., Chen, Y., Deng, D., Zhang, Z., Liu, K., Tang, M., Yang, T., Fu, S., Zhang, C., Si, W., Ma, Z., Zhang, S., Peng, B., Xu, D., & Chen, L. (2023). Design, {Synthesis} and {Biological} {Evaluation} of {Purine}-based {Derivatives} as {Novel} {JAK2}/{BRD4} ({BD2}) {Dual} {Target} {Inhibitors}. Bioorganic Chemistry, 132, 106386. https://doi.org/10.1016/j.bioorg.2023.106386
  • Hadni, H., & Elhallaoui, M. (2022). Discovery of anti-colon cancer agents targeting wild-type and mutant p53 using computer-aided drug design. Journal of Biomolecular Structure and Dynamics, 0(0), 1–19. https://doi.org/10.1080/07391102.2022.2153919
  • Hadni, H., Mazigh, M., & El Hallaoui, M. (2019). QSAR and Molecular docking studies of 4-anilinoquinoline-triazine hybrids as pf-DHFR inhibitors. Mediterranean Journal of Chemistry, 8(2), 84–93. https://doi.org/10.13171/mjc8219040407hh
  • Hassan, G. S., Georgey, H. H., George, R. F., & Mohamed, E. R. (2018). Aurones and furoaurones: Biological activities and synthesis. Bulletin of Faculty of Pharmacy, Cairo University, 56(2), 121–127. https://doi.org/10.1016/j.bfopcu.2018.06.002
  • Im, W., Seefeld, S., & Roux, B. (2000). A grand canonical Monte Carlo-Brownian Dynamics algorithm for simulating ion channels. Biophysical Journal, 79(2), 788–801. https://doi.org/10.1016/S0006-3495(00)76336-3
  • Khamouli, S., Belaidi, S., Ouassaf, M., Lanez, T., Belaaouad, S., & Chtita, S. (2022). Multi-combined 3D-QSAR, docking molecular and ADMET prediction of 5-azaindazole derivatives as LRRK2 tyrosine kinase inhibitors. Journal of Biomolecular Structure & Dynamics, 40(3), 1285–1298. https://doi.org/10.1080/07391102.2020.1824815
  • Klebe, G., Mietzner, T., & Weber, F. (1994). Different approaches toward an automatic structural alignment of drug molecules: Applications to sterol mimics, thrombin and thermolysin inhibitors. Journal of Computer-Aided Molecular Design, 8(6), 751–778. https://doi.org/10.1007/BF00124019
  • Kontzias, A., Kotlyar, A., Laurence, A., Changelian, P., & O'Shea, J. J. (2012). Jakinibs: A new class of kinase inhibitors in cancer and autoimmune disease. Current Opinion in Pharmacology, 12(4), 464–470. doi: 10.1016/j.coph.2012.03.006
  • Leonard, W. J., & O'Shea, J. J. (1998). Jaks and STATs: Biological implications. Annual Review of Immunology, 16, 293–322.https://doi.org/10.1146/annurev.immunol.16.1.293
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. https://doi.org/10.1007/s008940100045
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Liu, S., Ma, H., Zhang, H., Deng, C., & Xin, P. (2021). Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clinical Immunology (Orlando, Fla.), 230, 108793. https://doi.org/10.1016/j.clim.2021.108793
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mittal, R. R., McKinnon, R. A., & Sorich, M. J. (2008). Effect of steric molecular field settings on CoMFA predictivity. Journal of Molecular Modeling, 14(1), 59–67. https://doi.org/10.1007/s00894-007-0252-1
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Nakajima, Y., Inoue, T., Nakai, K., Mukoyoshi, K., Hamaguchi, H., Hatanaka, K., Sasaki, H., Tanaka, A., Takahashi, F., Kunikawa, S., Usuda, H., Moritomo, A., Higashi, Y., Inami, M., & Shirakami, S. (2015). Synthesis and evaluation of novel 1H-pyrrolo[2,3-b]pyridine-5-carboxamide derivatives as potent and orally efficacious immunomodulators targeting JAK3. Bioorganic & Medicinal Chemistry, 23(15), 4871–4883. https://doi.org/10.1016/j.bmc.2015.05.034
  • Nakamura, K., Inami, M., Morio, H., Okuma, K., Ito, M., Noto, T., Shirakami, S., Hirose, J., & Morokata, T. (2017). AS2553627, a novel JAK inhibitor, prevents chronic rejection in rat cardiac allografts. European Journal of Pharmacology, 796(December 2016), 69–75. https://doi.org/10.1016/j.ejphar.2016.12.025
  • Nosaka, T., van Deursen, J. M., Tripp, R. A., Thierfelder, W. E., Witthuhn, B. A., McMickle, A. P., Doherty, P. C., Grosveld, G. C., & Ihle, J. N. (1995). Defective lymphoid development in mice lacking Jak3. Science (New York, N.Y.), 270(5237), 800–802.https://doi.org/10.1126/science.270.5237.800
  • Ouassaf, M., Belaidi, S., Chtita, S., Lanez, T., Abul Qais, F., & Md Amiruddin, H. (2022). Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. Journal of Biomolecular Structure & Dynamics, 40(21), 11264–11273. https://doi.org/10.1080/07391102.2021.1957712
  • Philip, T., Bernard, J. L., Zucker, J. M., Pinkerton, R., Lutz, P., Bordigoni, P., Plouvier, E., Robert, A., Carton, R., & Philippe, N. (1987). High-dose chemoradiotherapy with bone marrow transplantation as consolidation treatment in neuroblastoma: An unselected group of stage IV patients over 1 year of age. Journal of Clinical Oncology : official Journal of the American Society of Clinical Oncology, 5(2), 266–271. https://doi.org/10.1200/JCO.1987.5.2.266
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rücker, C., Rücker, G., & Meringer, M. (2007). Y-Randomization-A useful tool in QSAR Validation,or Folklore? Journal of Chemical Information and Modeling, 47(6), 2345–2357. https://doi.org/10.1021/ci700157b
  • Rupasinghe, H. P. V. (2020). Special {Issue} “flavonoids and their disease prevention and treatment potential”: {Recent} advances and future perspectives. Molecules, 25(20), 4746. https://doi.org/10.3390/molecules25204746
  • SAS Institute Inc. (2020). JMP Pro 15. SAS Institute Inc. https://www.jmp.com/en_us/home.html
  • Scientific Reports. (2016, 7 October), 1–13. https://doi.org/10.1038/srep42717
  • Teague, S. J., Davis, A. M., Leeson, P. D., & Oprea, T. (1999). The design of leadlike combinatorial libraries. Angewandte Chemie International Edition, 38(24), 3743–3748. https://doi.org/10.1002/(SICI)1521-3773(19991216)38:243.0.CO;2-U
  • Thoma, G., Drückes, P., & Zerwes, H. G. (2014). Selective inhibitors of the Janus kinase Jak3 - Are they effective? Bioorganic & Medicinal Chemistry Letters, 24(19), 4617–4621. https://doi.org/10.1016/j.bmcl.2014.08.046
  • Thomis, D. C., & Berg, L. J. (1997). Peripheral expression of Jak3 is required to maintain T lymphocyte function. The Journal of Experimental Medicine, 185(2), 197–206. https://doi.org/10.1084/jem.185.2.197
  • Tripos Inc. (2014).
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Yamada, Y., Gohda, S., Abe, K., Togo, T., Shimano, N., Sasaki, T., Tanaka, H., Ono, H., Ohba, T., Kubo, S., Ohkubo, T., & Sato, S. (2017). Carbon materials with controlled edge structures. Carbon, 122(December 1995), 694–701. https://doi.org/10.1016/j.carbon.2017.07.012
  • Yin, Y., Chen, C. J., Yu, R. N., Wang, Z. J., Zhang, T. T., & Zhang, D. Y. (2018). Structure-based design and synthesis of 1H-pyrazolo[3,4-d]pyrimidin-4-amino derivatives as Janus kinase 3 inhibitors. Bioorganic & Medicinal Chemistry, 26(17), 4774–4786. https://doi.org/10.1016/j.bmc.2018.04.005
  • You, H., Xu, D., Zhao, J., Li, J., Wang, Q., Tian, X., Li, M., & Zeng, X. (2020). {JAK} inhibitors: Prospects in connective tissue diseases. Clinical Reviews in Allergy & Immunology, 59(3), 334–351.https://doi.org/10.1007/s12016-020-08786-6
  • Zev, S., Raz, K., Schwartz, R., Tarabeh, R., Gupta, P. K., & Major, D. T. (2021). Benchmarking the Ability of Common Docking Programs to Correctly Reproduce and Score Binding Modes in SARS-CoV-2 Protease Mpro. Journal of Chemical Information and Modeling, 61(6), 2957–2966. https://doi.org/10.1021/acs.jcim.1c00263
  • Zhong, H. A., & Almahmoud, S. (2023). Docking and Selectivity Studies of Covalently Bound Janus Kinase 3 Inhibitors. International Journal of Molecular Sciences, 24(7), 6023. https://doi.org/10.3390/ijms24076023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.