139
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Acetylcholinesterase inhibitory activities of some flavonoids from the root bark of Pinus krempfii Lecomte: in vitro and in silico study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon & show all
Pages 4888-4901 | Received 29 Jan 2023, Accepted 05 Jun 2023, Published online: 16 Jun 2023

References

  • Alzheimer-Association - Alzheimer’s Association Report. (2019). 2019: Alzheimer’s disease facts and figures.
  • Alzheimer-Association—Alzheimer’s Association Report. (2017). 2017: Alzheimer’s disease facts and figures.
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • BIOVIA, IOVIA, Dassault Systèmes. (2021). Discovery Studio Visualizer, v21.1.0.20298. Dassault Systèmes.
  • Camps, P., El-Achab, R., Morral, J., Muñoz-Torrero, D., Badia, A., Baños, J.E., Vivas, N.M., Barril, X., Orozco, M., Luque, F.J. New tacrine − huperzine a hybrids (Huprines): Highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s Disease.Journal of Medicinal Chemistry, 24., 43 (2000) 4657–4666. https://doi.org/10.1021/jm000980y
  • Cheung, J., Gary, E. N., Shiomi, K., & Rosenberry, T. L. (2013). Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Medicinal Chemistry Letters, 4(11), 1091–1096. https://doi.org/10.1021/ml400304w
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Chiroma, S. M., Moklas, M. A. M., Taib, C. N. M., Baharuldin, M. T. H., & Amon, Z. (2018). D-galactose and aluminium chloride induced rat model with cognitive impairments. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 103, 1602–1608. https://doi.org/10.1016/j.biopha.2018.04.152
  • Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., Sustr, V., Klvana, M., & Medek, P. (2012). CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures, PLoS, 8(10), e1002708.
  • Daina, A., Michielin, O., & Zoete, V. S. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1093/nar/gky318
  • de Paula, A. A. N., Martins, J. B. L., dos Santos, M. L., Nascente, L., Romeiro, L. A. S., Areas, T. F. M. A., Vieira, K. S. T., Gambôa, N. F., Castro, N. G., & Gargano, R. (2009). New potential AChE inhibitor candidates. Eur. European Journal of Medicinal Chemistry, 44(9), 3754–3759. https://doi.org/10.1016/j.ejmech.2009.03.045
  • DeLano, W. (2002). Pymol: An open-source molecular graphics tool, 40, 82–92. http://www.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf
  • Dziedziński, M., Kobus-Cisowska, J., & Stachowiak, B. (2021). Pinus species as prospective reserves of bioactive compounds with potential use in functional food—current state of knowledge. Plants (Basel), 10(7), 1306. https://doi.org/10.3390/plants10071306
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Essa, M. M., Vijayan, R. K., Castellano-Gonzalez, G., Memon, M. A., Braidy, N., & Guillemin, G. J. (2012). Neuroprotective effect of natural products against Alzheimer’s disease. Neurochemical Research, 37(9), 1829–1842. https://doi.org/10.1007/s11064-012-0799-9
  • Guo, A. J., Xie, H. Q., Choi, R. C., Zheng, K. Y., Bi, C. W., Xu, S. L., Dong, T. T., & Tsim, K. W. (2010). Galangin, a flavonol derived from Rhizoma Alpiniae officinarum, inhibits acetylcholinesterase activity in vitro. Chemico-Biological Interactions, 187(1-3), 246–248. https://doi.org/10.1016/j.cbi.2010.05.002
  • Halgren, T. A. (1999). MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry, 20(7), 720–729. https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
  • Hummer, G., & Szabo, A. (2001). Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 3658–3661. https://doi.org/10.1073/pnas.071034098
  • Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., & Schulten, K. (1999). Steered Molecular Dynamics. ; Springer Berlin Heidelberg.
  • Jarzynski, C. (1997). Nonequilibrium equality for free energy differences. Physical Review Letters, 78(14), 2690–2693.) https://doi.org/10.1103/PhysRevLett.78.2690
  • Karmakar, A., Ambure, P., Mallick, T., Das, S., Roy, K., & Begum, N. A. (2019). Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: An approach towards finding their quantitative structure–activity relationship. Medicinal Chemistry Research, 28(5), 723–741. https://doi.org/10.1007/s00044-019-02330-8
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Li, J., Wu, H. M., Zhou, R. L., Liu, G. J., & Dong, B. R. (2008). Huperzine A for Alzheimer’s disease. Cochrane Database Syst Rev, 16 CD005592. https://doi.org/10.1002/14651858.CD005592.pub2
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Luo, W., Su, Y. B., Hong, C., Tian, R. G., Su, L. P., Wang, Y. Q., Li, Y., Yue, J. J., & Wang, C. J. (2013). Design synthesis and evaluation of novel 4-dimethylamine flavonoid derivatives as potential multi-functional anti-Alzheimer agents. Bioorganic & Medicinal Chemistry, 21(23), 7275–7282. https://doi.org/10.1016/j.bmc.2013.09.061
  • Maramai, S., Benchekroun, M., Gabr, M. T., & Yahiaoui, S. (2020). Multitarget therapeutics for neurodegenerative diseases. BioMed Research International, 2020, 6532827. https://doi.org/10.1155/2020/6532827
  • Meza, J. C. (2010). Steepest descent. WIREs Computational Statistics, 2(6), 719–722. https://doi.org/10.1002/wics.117
  • Miles, J. A., & Ross, B. P. (2021). Recent advances in virtual screening for cholinesterase inhibitors. ACS Chemical Neuroscience, 12(1), 30–41. https://doi.org/10.1021/acschemneuro.0c00627
  • Mushtaq, G., Greig, N. H., Khan, J. A., & Kamal, M. A. (2014). Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. CNS & Neurological Disorders Drug Targets, 13(8), 1432–1439. https://doi.org/10.2174/1871527313666141023141545
  • Nachon, F., Carletti, E., Ronco, C., Trovaslet, M., Nicolet, Y., Jean, L., & Renard, P. Y. (2013). Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl-and butyryl-cholinesterase. The Biochemical Journal, 453(3), 393–399. https://doi.org/10.1042/BJ20130013
  • Nhung, L. T. H., Thuy, T. T., Tam, N. T., Phong, D. T., Hiep, N. T., & Sung, T. V. (2013). Flavonoids and their biological activities from the rootbark of Pinus krempfii Lecomte. Vietnam Journal of Chemistry. 51, 22–26.
  • Nhung, N. T., Nhung, D., Huong, P. T. T., Quan, V. V., & Tam, N. M. (2022). In silico screening of potential β‑secretase (BACE1) inhibitors from VIETHERB database. Journal of Molecular Modeling, 28(3), 60. https://doi.org/10.1007/s00894-022-05051-9
  • Olin, J., & Schneider, L. (2002). Galantamine for Alzheimer’s disease. Cochrane Database Syst Rev, 3, CD001747. https://doi.org/10.1002/14651858.CD001747
  • Parihar, A., Sonia, Z. F., Choudhary, N. K., Sharma, P., Mahdi, I., Hakim, F. T., Ali, M. A., Khan, R., Alqahtan, M. S., & Abbas, M. (2022). Identification of plant-based drug-like molecules as potential inhibitors against hACE2 and S-RBD of SARS-CoV-2 using multi-step molecular docking and dynamic simulation approach. Research Square, https://doi.org/10.21203/rs.3.rs-1517448/v1
  • Petřek, M., Otyepka, M., Banáš, P., Košinová, P., Koča, J., & Damborský, J. (2006). CAVER: A new tool to explore routes from protein clefts, pockets and cavities, 7, 1–9.
  • Phong, D. T., Lieu, T. T., Hien, V. T. T., & Hiep, N. T. (2015). Genetic diversity of the endemic flat-needle pine Pinus krempfii (Pinaceae) from Vietnam revealed by SSR markers. Genetics and Molecular Research : GMR, 14(3), 7727–7739. https://doi.org/10.4238/2015.July.13.19
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Schrödinger, L., & DeLano, W. (2020). PyMOL. Retrieved from http://www.pymol.org/pymol
  • Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Molecular Medicine Reports. 20, 1479–1487. https://doi.org/10.3892/mmr.2019.10374
  • Taylor, P., Camp, S., Radić, Z.- Acetylcholinesterase; Squire, L. R., Ed. (2009). Academic Press. 5–7.
  • Thai, Q. M., Pham, T. N. H., Hiep, D. M., Pham, M. Q., Tran, P.-T., Nguyen, T. H., & Ngo, S. T. (2022). Searching for AChE inhibitors from natural compounds by using machine learning and atomistic simulations. Journal of Molecular Graphics & Modelling, 115, 108230. https://doi.org/10.1016/j.jmgm.2022.108230
  • Topal, M. (2019). Secondary metabolites of ethanol extracts of Pinus sylvestris cones from Eastern Anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Records of Natural Products, 14(2), 129–138. https://doi.org/10.25135/rnp.155.19.06.1326
  • Ustun, O., Senol, F. S., Kurkcuoglu, M., Orhan, I. E., Kartal, M., & Baser, K. H. C. (2012). Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Industrial Crops and Products. 38, 115–123. https://doi.org/10.1016/j.indcrop.2012.01.016
  • Vuong, Q. V., Nguyen, T. T., & Li, M. S. (2015). A new method for navigating optimal direction for pulling ligand from binding pocket: application to ranking binding affinity by steered molecular dynamics. Journal of Chemical Information and Modeling, 55(12), 2731–2738. https://doi.org/10.1021/acs.jcim.5b00386
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. J. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.