121
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Laccase catalytic activity shielded by SiO2 nanostructured materials: an in vitro and in silico approach

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4902-4908 | Received 21 Mar 2023, Accepted 05 Jun 2023, Published online: 16 Jun 2023

References

  • Amin, R., Khorshidi, A., Shojaei, A. F., Rezaei, S., & Faramarzi, M. A. (2018). Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. International Journal of Biological Macromolecules, 114, 106–113. https://doi.org/10.1016/j.ijbiomac.2018.03.086
  • Bolivar, J. M., Schelch, S., Mayr, T., & Nidetzky, B. (2015). Mesoporous silica materials labeled for optical oxygen sensing and their application to development of a silica-supported oxidoreductase biocatalyst. ACS Catalysis, 5(10), 5984–5993. https://doi.org/10.1021/acscatal.5b01601
  • Bryjak, J., Szymańska, K., & Jarzębski, A. B. (2012). Laccase immobilisation on mesostructured silicas. Chemical and Process Engineering, 33(4), 611–620. https://doi.org/10.2478/v10176-012-0051-9
  • Daâssi, D., Rodríguez-Couto, S., Nasri, M., & Mechichi, T. (2014). Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. International Biodeterioration & Biodegradation, 90, 71–78. https://doi.org/10.1016/j.ibiod.2014.02.006
  • Díaz, J. F., & Balkus, K. J. (1996). Enzyme immobilization in MCM-41 molecular sieve. Journal of Molecular Catalysis B: Enzymatic, 2(2–3), 115–126. https://doi.org/10.1016/S1381-1177(96)00017-3
  • Dinu, M. V., Dinu, I. A., Saxer, S. S., Meier, W., Pieles, U., & Bruns, N. (2021). Stabilizing enzymes within polymersomes by coencapsulation of trehalose. Biomacromolecules, 22(1), 134–145. https://doi.org/10.1021/acs.biomac.0c00824
  • Du, X., Li, J., Gellerstedt, G., Rencoret, J., Del Río, J. C., Martínez, A. T., & Gutiérrez, A. (2013). Understanding pulp delignification by laccase–mediator systems through isolation and characterization of lignin–carbohydrate complexes. Biomacromolecules, 14(9), 3073–3080. https://doi.org/10.1021/bm4006936
  • Hanefeld, U., Gardossi, L., & Magner, E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews, 38(2), 453–468. https://doi.org/10.1039/b711564b
  • Kim, S.-S., Pauly, T. R., & Pinnavaia, T. J. (2000). Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chemical Communications, 1661-1662. https://doi.org/10.1039/b002856h
  • Kunamneni, A., Plou, F. J., Ballesteros, A., & Alcalde, M. (2008). Laccases and their applications: A patent review. Recent Patents on Biotechnology, 2(1), 10–24. https://doi.org/10.2174/187220808783330965
  • Luan, Z., Hartmann, M., Zhao, D., Zhou, W., & Kevan, L. (1999). Alumination and ion exchange of mesoporous SBA-15 molecular sieves. Chemistry of Materials, 11(6), 1621–1627. https://doi.org/10.1021/cm9900756
  • Muñoz-Guerrero, F. A., Águila, S., Vazquez-Duhalt, R., Torres, C. C., Campos, C. H., & Alderete, J. B. (2016). Biocatalytic performance of chloroperoxidase from Caldariomyces fumago immobilized onto TiO2 based supports. Topics in Catalysis, 59(2–4), 387–393. https://doi.org/10.1007/s11244-015-0438-1
  • Nannipieri, P., & Bollag, J.-M. (1991). Use of enzymes to detoxify pesticide-contaminated soils and waters. Journal of Environmental Quality, 20(3), 510–517. https://doi.org/10.2134/jeq1991.00472425002000030002x
  • Pickard, M. A., Vandertol, H., Roman, R., & Vazquez-Duhalt, R. (1999). High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium. Canadian Journal of Microbiology, 45(7), 627–631. https://doi.org/10.1139/w98-233
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
  • Salkinoja-Salonen, M., Uotila, J., Jokela, J., Laine, M., & Saski, E. (1995). Organic halogens in the environment: Studies of environmental biodegradability and human exposure. Environmental Health Perspectives, 103, 63. https://doi.org/10.2307/3432482
  • Schmidt-Winkel, P., Lukens, W. W., Zhao, D., Yang, P., Chmelka, B. F., & Stucky, G. D. (1999). Mesocellular siliceous foams with uniformly sized cells and windows. Journal of the American Chemical Society, 121(1), 254–255. https://doi.org/10.1021/ja983218i
  • Schubert, M., Ruedin, P., Civardi, C., Richter, M., Hach, A., & Christen, H. (2015). Laccase-catalyzed surface modification of thermo-mechanical pulp (TMP) for the production of wood fiber insulation boards using industrial process water. PLoS One, 10(6), e0128623. https://doi.org/10.1371/journal.pone.0128623
  • Singh, G., & Arya, S. K. (2019). Utility of laccase in pulp and paper industry: A progressive step towards the green technology. International Journal of Biological Macromolecules, 134, 1070–1084. https://doi.org/10.1016/j.ijbiomac.2019.05.168
  • Strong, P. J., & Claus, H. (2011). Laccase: A review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41(4), 373–434. https://doi.org/10.1080/10643380902945706
  • Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140(1), 19–26. https://doi.org/10.1099/13500872-140-1-19
  • Torres-Duarte, C., Roman, R., Tinoco, R., & Vazquez-Duhalt, R. (2009). Halogenated pesticide transformation by a laccase-mediator system. Chemosphere, 77(5), 687–692. https://doi.org/10.1016/j.chemosphere.2009.07.039
  • Vidal-Limon, A., García Suárez, P. C., Arellano-García, E., Contreras, O. E., & Aguila, S. A. (2018). Enhanced degradation of pesticide dichlorophen by laccase immobilized on nanoporous materials: A cytotoxic and molecular simulation investigation. Bioconjugate Chemistry, 29(4), 1073–1080. https://doi.org/10.1021/acs.bioconjchem.7b00739
  • Wang, H., Zhang, W., Zhao, J., Xu, L., Zhou, C., Chang, L., & Wang, L. (2013). Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Industrial & Engineering Chemistry Research, 52(12), 4401–4407. https://doi.org/10.1021/ie302627c
  • Wei, Y., Dong, H., Xu, J. G., & Feng, Q. W. (2002). Simultaneous immobilization of horseradish peroxidase and glucose oxidase in mesoporous sol-gel host materials. ChemPhysChem, 3(9), 802–808. https://doi.org/10.1002/1439-7641(20020916)3:93.0.CO;2-H
  • Zhang, C., You, S., Zhang, J., Qi, W., Su, R., & He, Z. (2020). An effective in-situ method for laccase immobilization: Excellent activity, effective antibiotic removal rate and low potential ecological risk for degradation products. Bioresource Technology, 308, 123271. https://doi.org/10.1016/j.biortech.2020.123271
  • Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science (New York, N.Y.), 279(5350), 548–552. https://doi.org/10.1126/science.279.5350.548
  • Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., & Stucky, G. D. (1998). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 120(24), 6024–6036. https://doi.org/10.1021/ja974025i
  • Zhou, W., Zhang, W., & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review. Chemical Engineering Journal, 403, 126272. https://doi.org/10.1016/j.cej.2020.126272

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.