134
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A comprehensive immunoinformatics study to explore and characterize potential vaccine constructs against Ole e 9 allergen of Olea europaea

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4644-4655 | Received 18 Mar 2023, Accepted 31 May 2023, Published online: 20 Jun 2023

References

  • Al Qaraghuli, M. M., Kubiak-Ossowska, K., Ferro, V. A., & Mulheran, P. A. (2020). Antibody-protein binding and conformational changes: Identifying allosteric signalling pathways to engineer a better effector response. Scientific Reports, 10(1), 13696. https://doi.org/10.1038/s41598-020-70680-0
  • Alsulimani, A., Bhardwaj, T., Janahi, E. M., Almalki, A. H., Tewari, B. N., Wahid, M., Mustfa, F., Somvanshi, P., & Haque, S. (2022). Systematic structure guided clustering of chemical lead compounds targeting RdRp of SARS-CoV-2. Minerva Biotechnology and Biomolecular Research, 34, 114–121.
  • Ansotegui, I. J., Melioli, G., Canonica, G. W., Caraballo, L., Villa, E., Ebisawa, M., Passalacqua, G., Savi, E., Ebo, D., Gómez, R. M., Luengo Sánchez, O., Oppenheimer, J. J., Jensen-Jarolim, E., Fischer, D. A., Haahtela, T., Antila, M., Bousquet, J. J., Cardona, V., Chiang, W. C., Demoly, P. M., DuBuske, L. M., & Zuberbier, T. (2020 February 25). IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. The World Allergy Organization Journal, 13(2), 100080. Erratum in: World Allergy Organ J. 2021 Jun 17;14(7):100557. PMID: 32128023; PMCID: PMC7044795. https://doi.org/10.1016/j.waojou.2019.100080
  • Balmeh, N., Mahmoudi, S., Pourhoseyni, H., & Allahyari Fard, N. (2022). An in-silico approach of allergenicity reduction in PR10 and profilin families of pan allergens using allergen-IgE docking analysis. Revue Française D'Allergologie, 62(6), 521–528. https://doi.org/10.1016/j.reval.2022.01.019
  • Bartolini, G., & Petruccelli, R. (2002). Classification, origin, diffusion and history of the olive. Food and Agriculture Organization of the United Nations.
  • Bastiaan-Net, S., Pina-Pérez, M. C., Dekkers, B. J. W., Westphal, A. H., America, A. H. P., Ariëns, R. M. C., de Jong, N. W., Wichers, H. J., & Mes, J. J. (2020). Identification and in silico bioinformatics analysis of PR10 proteins in cashew nut. Protein Science, 29(7), 1581–1595. https://doi.org/10.1002/pro.3856
  • Bhardwaj, T., Ahmad, I., & Somvanshi, P. (2023). Systematic analysis to identify novel disease indications and plausible potential chemical leads of glutamate ionotropic receptor NMDA type subunit 1, GRIN1. Journal of Molecular Recognition, 36(1), e2997.
  • Bhardwaj, T., Haque, S., & Somvanshi, P. (2019). Comparative assessment of the therapeutic drug targets of C. botulinum ATCC 3502 and C. difficile str. 630 using in silico subtractive proteomics approach. Journal of Cellular Biochemistry, 120(9), 16160–16184. https://doi.org/10.1002/jcb.28897
  • Bokka, C. S., Veeramachaneni, G. K., Thunuguntla, V. B. S. C., Bobbillapati, J., & Bondili, J. S. (2019 May 21). Peptide mapping, in silico and in vivo analysis of allergenic sorghum profilin peptides. Medicina (Kaunas), 55(5), 178. https://doi.org/10.3390/medicina55050178
  • Brito, F. F., Gimeno, P. M., Carnés, J., Martín, R., Fernández-Caldas, E., Lara, P., López-Fidalgo, J., & Guerra, F. (2011). Olea europaea pollen counts and aeroallergen levels predict clinical symptoms in patients allergic to olive pollen. Annals of Allergy, Asthma & Immunology, 106(2), 146–152. https://doi.org/10.1016/j.anai.2010.11.003
  • Budin, N., Majeux, N., & Caflisch, A. (2001). Fragment-based flexible ligand docking by evolutionary optimization. Biological Chemistry, 382(9), 1365–1372. https://doi.org/10.1515/BC.2001.168
  • Calzada, D., Cremades-Jimeno, L., López-Ramos, M., & Cárdaba, B. (2021). Peptide allergen immunotherapy: A new perspective in olive-pollen allergy. Pharmaceutics, 13(7), 1007. https://doi.org/10.3390/pharmaceutics13071007
  • de Dios Alché, J., M'rani-Alaoui, M., Castro, A. J., & Rodríguez-García, M. I. (2004). Ole e 1, the major allergen from olive (Olea europaea L.) pollen, increases its expression and is released to the culture medium during in vitro germination. Plant & Cell Physiology, 45(9), 1149–1157. https://doi.org/10.1093/pcp/pch127
  • Dondelinger, M., Filée, P., Sauvage, E., Quinting, B., Muyldermans, S., Galleni, M., & Vandevenne, M. S. (2018). Understanding the significance and implications of antibody numbering and antigen-binding surface/residue definition. Frontiers in Immunology, 9, 2278. https://doi.org/10.3389/fimmu.2018.02278
  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
  • Fernández-González, M., González-Fernández, E., Fernández-González, D., & Rodríguez-Rajo, F. J. (2020). Secondary outcomes of the Ole e 1 proteins involved in pollen tube development: Impact on allergies. Frontiers in Plant Science, 11(974), 974. https://doi.org/10.3389/fpls.2020.00974
  • Florido Lopez, J. F., Quiralte Enriquez, J., Arias de Saavedra Alías, J. M., Saenz de San Pedro, B., & Martin Casañez, E. (2002). An allergen from Olea europaea pollen (Ole e 7) is associated with plant-derived food anaphylaxis. Allergy, 57(Suppl 71), 53–59. https://doi.org/10.1034/j.1398-9995.2002.057s71053.x
  • Galli, S. J., & Tsai, M. (2012). IgE and mast cells in allergic disease. Nature Medicine, 18(5), 693–704. https://doi.org/10.1038/nm.2755
  • Galli, S. J., Tsai, M., & Piliponsky, A. M. (2008). The development of allergic inflammation. Nature, 454(7203), 445–454. https://doi.org/10.1038/nature07204
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In JM Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press.
  • Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences : CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics (Oxford, England), 19(1), 163–164. https://doi.org/10.1093/bioinformatics/19.1.163
  • Hashmi, M. A., Khan, A., Hanif, M., Farooq, U., & Perveen, S. (2015). Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evidence-Based Complementary and Alternative Medicine : ECAM, 2015, 541591. https://doi.org/10.1155/2015/541591
  • Hauser, M., Roulias, A., Ferreira, F., & Egger, M. (2010). Panallergens and their impact on the allergic patient. Allergy, Asthma & Clinical Immunology, 6(1), 1.
  • Hetényi, C., & van der Spoel, D. (2002). Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Science, 11(7), 1729–1737. https://doi.org/10.1110/ps.0202302
  • Hirokawa, T., Boon-Chieng, S., & Mitaku, S. (1998). SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics (Oxford, England), 14(4), 378–379. https://doi.org/10.1093/bioinformatics/14.4.378
  • Huecas, S., Villalba, M., & Rodríguez, R. (2001). Ole e 9, a major olive pollen allergen is a 1,3-beta-glucanase. Isolation, characterization, amino acid sequence, and tissue specificity. The Journal of Biological Chemistry, 276(30), 27959–27966. https://doi.org/10.1074/jbc.M103041200
  • Jamakhani, M., Lele, S. S., & Rekadwad, B. (2018). In silico assessment data of allergenicity and cross-reactivity of NP24 epitopes from Solanum lycopersicum (Tomato) fruit. Data in Brief, 21, 660–674. https://doi.org/10.1016/j.dib.2018.09.074
  • Kausar, M. A., Bhardwaj, T., Anwar, S., Alenazi, F., Ali, A., Alshammari, K. F., AboElnaga, S. M. H., Singh, R., & Najm, M. Z. (2022). In silico comparative exploration of allergens of Periplaneta americana, Blattella germanica and Phoenix dactylifera for the diagnosis of patients suffering from IgE-mediated allergic respiratory diseases. Molecules, 27(24), 8740. https://doi.org/10.3390/molecules27248740
  • Kausar, M. A., Rabie, A. M., Azam, F., Anwar, S., Alenazi, F., Alshammari, K. F., Kar, S., Ali, A., AboElnaga, S. M. H., Jamal, A., Singh, G., Thakur, L., Najm, M. Z., & Saeed, M. (2023). The role of Aedes aegypti in inducing/aggravating IgE-mediated allergic airway disease: extensive computational studies for identification of allergenic proteins. Journal of Biomolecular Structure and Dynamics, 16, 1–8. https://doi.org/10.1080/07391102.2023.2212305
  • Khan, S., Bhardwaj, T., Somvanshi, P., Mandal, R. K., Dar, S. A., Jawed, A., Wahid, M., Akhter, N., Lohani, M., Alouffi, S., & Haque, S. (2018). Inhibition of C298S mutant of human aldose reductase for antidiabetic applications: Evidence from in silico elementary mode analysis of biological network model. Journal of Cellular Biochemistry, 119(8), 6961–6973. https://doi.org/10.1002/jcb.26904
  • Khan, S., Somvanshi, P., Bhardwaj, T., Mandal, R. K., Dar, S. A., Wahid, M., Jawed, A., Lohani, M., Khan, M., Areeshi, M. Y., & Haque, S. (2018). Aspartate-β-semialdeyhyde dehydrogenase as a potential therapeutic target of Mycobacterium tuberculosis H37Rv: Evidence from in silico elementary mode analysis of biological network model. Journal of Cellular Biochemistry, 119(3), 2832–2842. https://doi.org/10.1002/jcb.26458
  • Kushwaha, P., Singh, V., Somvanshi, P., Bhardwaj, T., Barreto, G. E., Ashraf, G. M., Mishra, B. N., Chundawat, R. S., & Haque, S. (2021). Identification of new BACE1 inhibitors for treating Alzheimer’s disease. Journal of Molecular Modeling, 27(2), 58. https://doi.org/10.1007/s00894-021-04679-3
  • Kwok, S. C., Mant, C. T., & Hodges, R. S. (2002). Importance of secondary structural specificity determinants in protein folding: Insertion of a native beta-sheet sequence into an alpha-helical coiled-coil. Protein Science, 11(6), 1519–1531. https://doi.org/10.1110/ps.4170102
  • Li, L., Chen, S., Miao, Z., Liu, Y., Liu, X., Xiao, Z. X., & Cao, Y. (2019). AbRSA: A robust tool for antibody numbering. Protein Science, 28(8), 1524–1531. https://doi.org/10.1002/pro.3633
  • Lu, H., Zhou, Q., He, J., Jiang, Z., Peng, C., Tong, R., & Shi, J. (2020). Recent advances in the development of protein-protein interactions modulators: Mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 5(1), 213.
  • Maurer-Stroh, S., Krutz, N. L., Kern, P. S., Gunalan, V., Nguyen, M. N., Limviphuvadh, V., Eisenhaber, F., & Gerberick, G. F. (2019). AllerCatPro-prediction of protein allergenicity potential from the protein sequence. Bioinformatics (Oxford, England), 35(17), 3020–3027. https://doi.org/10.1093/bioinformatics/btz029
  • Mohamad Sobri, M. F., Abd-Aziz, S., Abu Bakar, F. D., & Ramli, N. (2020). In-silico characterization of glycosyl hydrolase family 1 β-glucosidase from Trichoderma asperellum UPM1. International Journal of Molecular Sciences, 21(11), 4035. https://doi.org/10.3390/ijms21114035
  • Popescu, F. D. (2015). Cross-reactivity between aeroallergens and food allergens. World Journal of Methodology, 5(2), 31–50. https://doi.org/10.5662/wjm.v5.i2.31
  • Ramaraj, T., Angel, T., Dratz, E. A., Jesaitis, A. J., & Mumey, B. (2012). Antigen-antibody interface properties: Composition, residue interactions, and features of 53 non-redundant structures. Biochimica et Biophysica Acta, 1824(3), 520–532. https://doi.org/10.1016/j.bbapap.2011.12.007
  • Ravachol, J., Borne, R., Tardif, C., de Philip, P., & Fierobe, H. P. (2014). Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. The Journal of Biological Chemistry, 289(11), 7335–7348. https://doi.org/10.1074/jbc.M113.545046
  • Reis, P. B. P. S., Barletta, G. P., Gagliardi, L., Fortuna, S., Soler, M. A., & Rocchia, W. (2022). Antibody-antigen binding interface analysis in the big data era. Frontiers in Molecular Biosciences, 9, 945808. https://doi.org/10.3389/fmolb.2022.945808
  • Reno, A. L., Brooks, E. G., & Ameredes, B. T. (2015). Mechanisms of heightened airway sensitivity and responses to inhaled SO2 in asthmatics. Environ Health Insights, 9(Suppl 1), 13–25.
  • Rigsby, R. E., & Parker, A. B. (2016). Using the PyMOL application to reinforce visual understanding of protein structure. Biochemistry and Molecular Biology Education, 44(5), 433–437. https://doi.org/10.1002/bmb.20966
  • Saetang, J., Tipmanee, V., & Benjakul, S. (2022 April 21). In silico prediction of cross-reactive epitopes of tropomyosin from shrimp and other arthropods involved in allergy. Molecules, 27(9), 2667. https://doi.org/10.3390/molecules27092667
  • Saha, S., & Raghava, G. P. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server issue), W202–W209. https://doi.org/10.1093/nar/gkl343
  • Saponaro, A., Maione, V., Bonvin, A. M. J. J., & Cantini, F. (2020). Understanding docking complexes of macromolecules using HADDOCK: The synergy between experimental data and computations. Bio-Protocol, 10(20), e3793.
  • Satyam, R., Bhardwaj, T., Jha, N. K., Jha, S. K., & Nand, P. (2020). Toward a chimeric vaccine against multiple isolates of Mycobacteroides – An integrative approach. Life Sciences, 250, 117541. https://doi.org/10.1016/j.lfs.2020.117541
  • Satyam, R., Janahi, E. M., Bhardwaj, T., Somvanshi, P., Haque, S., & Najm, M. Z. (2018). In silico identification of immunodominant B-cell and T-cell epitopes of non-structural proteins of Usutu Virus. Microbial Pathogenesis, 125, 129–143. https://doi.org/10.1016/j.micpath.2018.09.019
  • Skoner, D. P. (2001). Allergic rhinitis: Definition, epidemiology, pathophysiology, detection, and diagnosis. The Journal of Allergy and Clinical Immunology, 108(1 Suppl), S2–S8. https://doi.org/10.1067/mai.2001.115569
  • Stepanenko, O. V., Stepanenko, O. V., Kuznetsova, I. M., Verkhusha, V. V., & Turoverov, K. K. (2013). Beta-barrel scaffold of fluorescent proteins: Folding, stability and role in chromophore formation. International Review of Cell and Molecular Biology, 302, 221–278. https://doi.org/10.1016/B978-0-12-407699-0.00004-2
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489.
  • Wallander, E., & Albert, V. A. (2000). Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. American Journal of Botany, 87(12), 1827–1841.
  • Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., & Fu, C. (2022). Therapeutic peptides: Current applications and future directions. Signal Transduction and Targeted Therapy, 7(1), 48.
  • Woodfolk, J. A., Commins, S. P., Schuyler, A. J., Erwin, E. A., & Platts-Mills, T. A. (2015). Allergens, sources, particles, and molecules: Why do we make IgE responses? Allergology International, 64(4), 295–303. https://doi.org/10.1016/j.alit.2015.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.