157
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Benzimidazole-derived carbohydrazones as dual monoamine oxidases and acetylcholinesterase inhibitors: design, synthesis, and evaluation

, , &
Pages 4710-4729 | Received 26 Apr 2023, Accepted 01 Jun 2023, Published online: 22 Jun 2023

References

  • Ali, M. R. (2012). Review of biological activities of hydrazones. Indonesian Journal of Pharmacy, 23(4), 193–202. https://doi.org/10.14499/indonesianjpharm23iss4pp193-202
  • Asim Kaplancikli, Z., Dilek Altintop, M., Ozdemir, A., Turan-Zitouni, G., I. Khan, S., & Tabanca, N. (2012). Synthesis and biological evaluation of some hydrazone derivatives as anti-inflammatory agents. Letters in Drug Design & Discovery, 9(3), 310–315. https://doi.org/10.1016/j.ejmech.2012.10.011
  • Ates, I. O. (2021). New indane derivatives containing 2-hydrazinothiazole as potential acetylcholinesterase and monoamine oxidase-B inhibitors. Zeitschrift für Naturforschung C, 76(9-10), 417–424. https://doi.org/10.1515/znc-2021-0058
  • Axelsen, P. H., Harel, M., Silman, I., & Sussman, J. L. (1994). Structure and dynamics of the active site gorge of acetylcholinesterase: Synergistic use of molecular dynamics simulation and X‐ray crystallography. Protein Science: A Publication of the Protein Society, 3(2), 188–197. https://doi.org/10.1002/pro.5560030204
  • Binda, C., Newton-Vinson, P., Hubálek, F., Edmondson, D. E., & Mattevi, A. (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nature Structural Biology, 9(1), 22–26. https://doi.org/10.1038/nsb732
  • Binda, C., Wang, J., Pisani, L., Caccia, C., Carotti, A., Salvati, P., Edmondson, D. E., & Mattevi, A. (2007). Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs. Journal of Medicinal Chemistry, 50(23), 5848–5852. https://doi.org/10.1021/jm070677y
  • Bolognino, I., Giangregorio, N., Pisani, I., de Candia, M., Purgatorio, R., Tonazzi, A., Altomare, C. D., Cellamare, S., and Catto, M.. A prospective repurposing of dantrolene as a multitarget agent for Alzheimer’s disease. Molecules, 2019. 24(23), 4298. https://doi.org/10.3390/molecules24234298
  • Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789
  • Carobrez, A., & Bertoglio, L. (2005). Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neuroscience and Biobehavioral Reviews, 29(8), 1193–1205. https://doi.org/10.1016/j.neubiorev.2005.04.017
  • Chaves, S., Resta, S., Rinaldo, F., Costa, M., Josselin, R., Gwizdala, K., Piemontese, L., Capriati, V., Pereira-Santos, A. R., Cardoso, S. M., & Santos, M. A. (2020). Design, synthesis, and in vitro evaluation of hydroxybenzimidazole-donepezil analogues as multitarget-directed ligands for the treatment of Alzheimer’s disease. Molecules, 25(4), 985. https://doi.org/10.3390/molecules25040985
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • De Colibus, L., Li, M., Binda, C., Lustig, A., Edmondson, D. E., & Mattevi, A. (2005). Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12684–12689. https://doi.org/10.1073/pnas.0505975102
  • Demir, Y., Türkeş, C., Çavuş, M. S., Erdoğan, M., Muğlu, H., Yakan, H., & Beydemir, Ş. (2023). Enzyme inhibition, molecular docking, and density functional theory studies of new thiosemicarbazones incorporating the 4-hydroxy-3,5-dimethoxy benzaldehyde motif. Archiv Der Pharmazie, 356(4), 2200554. https://doi.org/10.1002/ardp.202200554
  • Deswal, L., Verma, V., Kumar, D., Kaushik, C. P., Kumar, A., Deswal, Y., & Punia, S. (2020). Synthesis and antidiabetic evaluation of benzimidazole-tethered 1,2,3-triazoles. Archiv Der Pharmazie, 353(9), e2000090. ) https://doi.org/10.1002/ardp.202000090
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187(1-3), 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
  • Edmondson, D. E., & Newton-Vinson, P. (2001). The covalent FAD of monoamine oxidase: Structural and functional role and mechanism of the flavinylation reaction. Antioxidants & Redox Signaling, 3(5), 789–806. https://doi.org/10.1089/15230860152664984
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Farina, R., Pisani, L., Catto, M., Nicolotti, O., Gadaleta, D., Denora, N., Soto-Otero, R., Mendez-Alvarez, E., Passos, C. S., Muncipinto, G., Altomare, C. D., Nurisso, A., Carrupt, P.-A., & Carotti, A. (2015). Structure-based design and optimization of multitarget-directed 2H-chromen-2-one derivatives as potent inhibitors of monoamine oxidase B and cholinesterases. Journal of Medicinal Chemistry, 58(14), 5561–5578. https://doi.org/10.1021/acs.jmedchem.5b00599
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Geldenhuys, W. J., & Van der Schyf, C. J. (2013). Rationally designed multi-targeted agents against neurodegenerative diseases. Current Medicinal Chemistry, 20(13), 1662–1672. https://doi.org/10.2174/09298673113209990112
  • Güleç, Ö., Türkeş, C., Arslan, M., Demir, Y., Yeni, Y., Hacımüftüoğlu, A., Ereminsoy, E., Küfrevioğlu, Ö. İ., & Beydemir, Ş. (2022). Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Molecular Diversity, 26(5), 2825–2845. https://doi.org/10.1007/s11030-022-10422-8
  • Gundogdu, S., Türkeş, C., Arslan, M., Demir, Y., & Beydemir, Ş. (2019). New isoindole-1,3-dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect, 4(45), 13347–13355. https://doi.org/10.1002/slct.201903458
  • Hassan, M., Ashraf, Z., Abbas, Q., Raza, H., & Seo, S.-Y. (2018). Exploration of novel human tyrosinase inhibitors by molecular modeling, docking and simulation studies. Interdisciplinary Sciences, Computational Life Sciences, 10(1), 68–80. https://doi.org/10.1007/s12539-016-0171-x
  • Imran, M., Shah, F. A., Nadeem, H., Zeb, A., Faheem, M., Naz, S., Bukhari, A., Ali, T., & Li, S. (2021). Synthesis and biological evaluation of benzimidazole derivatives as potential neuroprotective agents in an ethanol-induced rodent model. ACS Chemical Neuroscience, 12(3), 489–505. https://doi.org/10.1021/acschemneuro.0c00659
  • Jaiswal, S., Tripathi, R. K. P., & Ayyannan, S. R. (2018). Scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors: Synthesis and evaluation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 107, 1611–1623. https://doi.org/10.1016/j.biopha.2018.08.125
  • Jeong, G. S., Kaipakasseri, S., Lee, S. R., Marraiki, N., Batiha, G. E.-S., Dev, S., Palakkathondi, A., Kavully, F. S., Gambacorta, N., Nicolotti, O., Mathew, B., & Kim, H. (2020). Selected 1,3-benzodioxine-containing chalcones as multipotent oxidase and acetylcholinesterase inhibitors. ChemMedChem, 15(23), 2257–2263. https://doi.org/10.1002/cmdc.202000491
  • Joubert, J., Foka, G. B., Repsold, B. P., Oliver, D. W., Kapp, E., & Malan, S. F. (2017). Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, 125, 853–864. https://doi.org/10.1016/j.ejmech.2016.09.041
  • Krall, R. L., Penry, J. K., White, B. G., Kupferberg, H. J., & Swinyard, E. A. (1978). Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia, 19(4), 409–428. https://doi.org/10.1111/j.1528-1157.1978.tb04507.x
  • Krátký, M., Vu, Q. A., Štěpánková, Š., Maruca, A., Silva, T. B., Ambrož, M., Pflégr, V., Rocca, R., Svrčková, K., Alcaro, S., Borges, F., & Vinšová, J. (2021). Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorganic Chemistry, 116, 105301. https://doi.org/10.1016/j.bioorg.2021.105301
  • Kucukoglu, K., Gul, H. I., Taslimi, P., Gulcin, I., & Supuran, C. T. (2019). Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorganic Chemistry, 86, 316–321. https://doi.org/10.1016/j.bioorg.2019.02.008
  • Kumar, S., & Ayyannan, S. R. (2022). Identification of new small molecule monoamine oxidase-B inhibitors through pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 1–22. https://doi.org/10.1080/07391102.2022.2112082
  • Lanctôt, K. L., Amatniek, J., Ancoli-Israel, S., Arnold, S. E., Ballard, C., Cohen-Mansfield, J., Ismail, Z., Lyketsos, C., Miller, D. S., Musiek, E., Osorio, R. S., Rosenberg, P. B., Satlin, A., Steffens, D., Tariot, P., Bain, L. J., Carrillo, M. C., Hendrix, J. A., Jurgens, H., & Boot, B. (2017). Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(3), 440–449. https://doi.org/10.1016/j.trci.2017.07.001
  • Lemke, C., Christmann, J., Yin, J., Alonso, J. M., Serrano, E., Chioua, M., Ismaili, L., Martínez-Grau, M. A., Beadle, C. D., Vetman, T., Dato, F. M., Bartz, U., Elsinghorst, P. W., Pietsch, M., Müller, C. E., Iriepa, I., Wille, T., Marco-Contelles, J., & Gütschow, M. (2019). Chromenones as multineurotargeting inhibitors of human enzymes. ACS Omega, 4(26), 22161–22168. https://doi.org/10.1021/acsomega.9b03409
  • Lolak, N., Akocak, S., Durgun, M., Duran, H. E., Necip, A., Türkeş, C., Işık, M., & Beydemir, Ş. (2022). Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Molecular Diversity. https://doi.org/10.1007/s11030-022-10527-0
  • Mattevi, A., Edmondson, D. E., & Binda, C. (2002). Structure of human monoamine oxidase B, a drug target for neurological disorders. Acta Crystallographica Section A Foundations of Crystallography, 58(s1), C246–c246. https://doi.org/10.1038/nsb732
  • Mohareb, R., El-Sharkawy, K., & Hussein, M. M. (2010). Synthesis of hydrazide-hydrazone derivatives and their evaluation of antidepressant, sedative and analgesic agents. Journal Pharmaceutical Sciences and Research, 2(4), 185.
  • Morris, G. M., Goodsell, D. S., Huey, R., & Olson, A. J. (1996). Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. Journal of Computer-Aided Molecular Design, 10(4), 293–304. https://doi.org/10.1007/BF00124499
  • Norgan, A. P., Coffman, P. K., Kocher, J.-P A., Katzmann, D. J., & Sosa, C. P. (2011). Multilevel parallelization of AutoDock 4.2. Journal of Cheminformatics, 3(1), 12. https://doi.org/10.1186/1758-2946-3-12
  • Oh, J. M., Jang, H.-J., Kang, M.-G., Song, S., Kim, D.-Y., Kim, J.-H., Noh, J.-I., Park, J. E., Park, D., Yee, S.-T., & Kim, H. (2021). Acetylcholinesterase and monoamine oxidase-B inhibitory activities by ellagic acid derivatives isolated from Castanopsis cuspidata var. sieboldii. Scientific Reports, 11(1), 13953. https://doi.org/10.1038/s41598-021-93458-4
  • Pellow, S., & File, S. E. (1986). Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmacology, Biochemistry, and Behavior, 24(3), 525–529. https://doi.org/10.1016/0091-3057(86)90552-6
  • Porsolt, R. D., Anton, G., Blavet, N., & Jalfre, M. (1978). Behavioural despair in rats: A new model sensitive to antidepressant treatments. European Journal of Pharmacology, 47(4), 379–391. https://doi.org/10.1016/0014-2999(78)90118-8
  • Ramsay, R. R. (2016). Molecular aspects of monoamine oxidase B. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 69, 81–89. https://doi.org/10.1016/j.pnpbp.2016.02.005
  • Ramsay, R. R., Majekova, M., Medina, M., & Valoti, M. (2016). Key targets for multi-target ligands designed to combat neurodegeneration. Frontiers in Neuroscience, 10, 375. https://doi.org/10.3389/fnins.2016.00375
  • Rizvi, S. M. D., Shakil, S., & Haneef, M. (2013). A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI Journal, 12, 831.
  • Sasidharan, R., Eom, B. H., Heo, J. H., Park, J. E., Abdelgawad, M. A., Musa, A., Gambacorta, N., Nicolotti, O., Manju, S. L., Mathew, B., & Kim, H. (2021). Morpholine-based chalcones as dual-acting monoamine oxidase-B and acetylcholinesterase inhibitors: Synthesis and biochemical investigations. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 188–197. https://doi.org/10.1080/14756366.2020.1842390
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Šerý, O., Povová, J., Míšek, I., Pešák, L., & Janout, V. (2013). Molecular mechanisms of neuropathological changes in Alzheimer’s disease: A review. Folia Neuropathologica, 1(1), 1–9. https://doi.org/10.5114/fn.2013.34190
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y., Akalın Çiftçi, G., & Beydemir, Ş. (2021). Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Archiv Der Pharmazie, 354(12), e2100294. https://doi.org/10.1002/ardp.202100294
  • Strydom, B., Malan, S. F., Castagnoli, N., Bergh, J. J., & Petzer, J. P. (2010). Inhibition of monoamine oxidase by 8-benzyloxycaffeine analogues. Bioorganic & Medicinal Chemistry, 18(3), 1018–1028. https://doi.org/10.1016/j.bmc.2009.12.064
  • Thomas, D., Karle, C. A., & Kiehn, J. (2006). The cardiac hERG/IKr potassium channel as pharmacological target: Structure, function, regulation, and clinical applications. Current Pharmaceutical Design, 12(18), 2271–2283. https://doi.org/10.2174/138161206777585102
  • Tripathi, R. K. P., M Sasi, V., Gupta, S. K., Krishnamurthy, S., & Ayyannan, S. R. (2018). Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: Effect of the size of aryl binding site. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 37–57. https://doi.org/10.1080/14756366.2017.1389920
  • Tripathi, R. K., Goshain, O., & Ayyannan, S. R. (2013). Design, synthesis, in vitro MAO‐B inhibitory evaluation, and computational studies of some 6‐nitrobenzothiazole‐derived semicarbazones. ChemMedChem, 8(3), 462–474. https://doi.org/10.1002/cmdc.201200484
  • Tripathi, R. K., Rai, G. K., & Ayyannan, S. R. (2016). Exploration of a library of 3, 4‐(methylenedioxy) aniline‐derived semicarbazones as dual inhibitors of monoamine oxidase and acetylcholinesterase: Design, synthesis, and evaluation. ChemMedChem, 11(11), 1145–1160. https://doi.org/10.1002/cmdc.201600128
  • Turkes, C., Arslan, M., Demir, Y., Çoçaj, L., Rifati Nixha, A., & Beydemir, Ş. (2019). Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorganic Chemistry, 89, 103004. https://doi.org/10.1016/j.bioorg.2019.103004
  • Unzeta, M., Esteban, G., Bolea, I., Fogel, W. A., Ramsay, R. R., Youdim, M. B. H., Tipton, K. F., & Marco-Contelles, J. (2016). Multi-target directed donepezil-like ligands for Alzheimer’s disease. Frontiers in Neuroscience, 10, 205. https://doi.org/10.3389/fnins.2016.00205
  • Wang, L., Wang, Y., Tian, Y., Shang, J., Sun, X., Chen, H., Wang, H., & Tan, W. (2017). Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 25(1), 360–371. https://doi.org/10.1016/j.bmc.2016.11.002
  • Wenk, G. L. (2003). Neuropathologic-changes-Alzheimers-disease. Journal of Clinical Psychiatry, 64(9), 7–10.
  • Yu, Z. F., Kong, L. D., & Chen, Y. (2002). Antidepressant activity of aqueous extracts of Curcuma longa in mice. Journal of Ethnopharmacology, 83(1-2), 161–165. https://doi.org/10.1016/S0378-8741(02)00211-8
  • Zhang, P., Xu, S., Zhu, Z., & Xu, J. (2019). Multi-target design strategies for the improved treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, 176, 228–247. https://doi.org/10.1016/j.ejmech.2019.05.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.