197
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of thiamine pyrophosphokinase of vitamin B1 biosynthetic pathway as a drug target of Leishmania donovani

ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 5669-5685 | Received 22 Nov 2022, Accepted 15 Jun 2023, Published online: 23 Jun 2023

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Ansari, S., Bhatt, D. N., Sood, C., & Datta, A. (2021). Functional characterization of the LdNAGD gene in Leishmania donovani. Microbiological Research, 251, 126830. https://doi.org/10.1016/j.micres.2021.126830
  • Baker, L. J., Dorocke, J. A., Harris, R. A., & Timm, D. E. (2001). The crystal structure of yeast thiamin pyrophosphokinase. Structure, 9(6), 539–546. https://doi.org/10.1016/S0969-2126(01)00615-3
  • Bateman, A. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
  • Beck, B. J., & Downs, D. M. (1998). The apbE gene encodes a lipoprotein involved in thiamine synthesis in Salmonella typhimurium. Journal of Bacteriology, 180(4), 885–891. https://doi.org/10.1128/JB.180.4.885-891.1998
  • Begley, T. P., Downs, D. M., Ealick, S. E., McLafferty, F. W., Loon, A. P. G. M. V., Taylor, S., Campobasso, N., Chiu, H. J., Kinsland, C., Reddick, J. J., & Xi, J. (1999). Thiamin biosynthesis in prokaryotes. Archives of Microbiology, 171(5), 293–300. https://doi.org/10.1007/s002030050713
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06. https://doi.org/10.1145/1188455.1188544
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999
  • Buckner, F. S., & Wilson, A. J. (2005). Colorimetric assay for screening compounds against Leishmania amastigotes grown in macrophages. The American Journal of Tropical Medicine and Hygiene, 72(5), 600–605. https://doi.org/10.4269/ajtmh.2005.72.600
  • Bugiardini, E., Pope, S., Feichtinger, R. G., Poole, O. V., Pittman, A. M., Woodward, C. E., Heales, S., Quinlivan, R., Houlden, H., Mayr, J. A., Hanna, M. G., & Pitceathly, R. D. S. (2019). Utility of whole blood thiamine pyrophosphate evaluation in TPK1-related diseases. Journal of Clinical Medicine, 8(7), 991. https://doi.org/10.3390/jcm8070991
  • Campobasso, N., Mathews, I. I., Begley, T. P., & Ealick, S. E. (2000). Crystal structure of 4-methyl-5-β-hydroxyethylthiazole kinase from Bacillus subtilis at 1.5 Å resolution. Biochemistry, 39(27), 7868–7877. https://doi.org/10.1021/bi0000061
  • Chawla, B., Kumar, R. R., Tyagi, N., Subramanian, G., Srinivasan, N., Park, M. H., & Madhubala, R. (2012). A unique modification of the eukaryotic initiation factor 5A shows the presence of the complete hypusine pathway in leishmania donovani. PLoS One, 7(3), e33138. https://doi.org/10.1371/journal.pone.0033138
  • Chow, E., Rendleman, C. A., Bowers, K. J., Dror, R. O., H., D., Gullingsrud, J., Sacerdoti, F. D., & Shaw, D. E. (2008). Desmond performance on a cluster of multicore processors. D. E. Shaw Research Technical Report DESRES/TR-2008-01, New York. http://deshawresearch.com.
  • Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881
  • Dangi, P., Jain, R., Mamidala, R., Sharma, V., Agarwal, S., Bathula, C., Thirumalachary, M., Sen, S., & Singh, S. (2019). Natural product inspired novel indole based chiral scaffold kills human malaria parasites via ionic imbalance mediated cell death. Scientific Reports, 9(1), 17785. https://doi.org/10.1038/s41598-019-54339-z
  • Du, Q., Wang, H., & Xie, J. (2011). Thiamin (vitamin B1) biosynthesis and regulation: A rich source of antimicrobial drug targets? International Journal of Biological Sciences, 7(1), 41–52. https://doi.org/10.7150/ijbs.7.41
  • Edache, E. I., Uzairu, A., Mamza, P. A., & Shallangwa, G. A. (2022). QSAR, homology modeling, and docking simulation on SARS-CoV-2 and pseudomonas aeruginosa inhibitors, ADMET, and molecular dynamic simulations to find a possible oral lead candidate. Journal, Genetic Engineering & Biotechnology, 20, 88. https://doi.org/10.1186/s43141-022-00362-z
  • Fankhauser, H., Zurlinden, A., Schweingruber, A. M., Edenharter, E., & Schweingruber, M. E. (1995). Schizosaccharomyces pombe thiamine pyrophosphokinase is encoded by gene tnr3 and is a regulator of thiamine metabolism, phosphate metabolism, mating, and growth. The Journal of Biological Chemistry, 270(47), 28457–28462. https://doi.org/10.1074/jbc.270.47.28457
  • Gangolf, M., Czerniecki, J., Radermecker, M., Detry, O., Nisolle, M., Jouan, C., Martin, D., Chantraine, F., Lakaye, B., Wins, P., Grisar, T., & Bettendorff, L. (2010). Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PloS One, 5(10), e13616. https://doi.org/10.1371/journal.pone.0013616
  • Gubler, C. J. (1961). Studies on the physiological functions of thiamine. I. The effects of thiamine deficiency and thiamine antagonists on the oxidation of alpha-keto acids by rat tissues. Journal of Biological Chemistry, 236(12), 3112–3120. https://doi.org/10.1016/S0021-9258(18)93980-3
  • Gubler, C. J., & Murdock, D. S. (1982). Effects of treatment with thiamin antagonists, oxythiamin and pyrithiamin and of thiamin excess on the levels and distribution of thiamin in rat tissues. Journal of Nutritional Science and Vitaminology, 28(3), 217–224. https://doi.org/10.3177/jnsv.28.217
  • Hao, G. F., Xu, W. F., Yang, S. G., & Yang, G. F. (2015). Multiple simulated annealing-molecular dynamics (MSA-MD) for conformational space search of peptide and miniprotein. Scientific Reports, 5, 15568. https://doi.org/10.1038/srep15568
  • Herwaldt, B. L. (1999). Miltefosine—the long-awaited therapy for visceral leishmaniasis? New England Journal of Medicine, 341(24), 1840–1842. https://doi.org/10.1056/NEJM199912093412411
  • Hohmann, S., & Meacock, P. A. (1998). Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: Genetic regulation. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1385(2), 201–219. (Issue https://doi.org/10.1016/S0167-4838(98)00069-7
  • Horácio, E. C. A., Hickson, J., Murta, S. M. F., Ruiz, J. C., & Nahum, L. A. (2021). Perspectives from systems biology to improve knowledge of leishmania drug resistance. Frontiers in Cellular and Infection Microbiology, 11, 653670. https://doi.org/10.3389/fcimb.2021.653670
  • Huang, Z., Wong, C. F., & Wheeler, R. A. (2008). Flexible protein-flexible ligand docking with disrupted velocity simulated annealing. Proteins, 71(1), 440–454. https://doi.org/10.1002/prot.21781
  • Ingelman, M., Ramaswamy, S., Nivière, V., Fontecave, M., & Eklund, H. (1999). Crystal structure of NAD(P)H: Flavin oxidoreductase from Escherichia coli. Biochemistry, 38(22), 7040–7049. https://doi.org/10.1021/bi982849m
  • Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences: CABIOS, 8(3), 275–282. https://doi.org/10.1093/bioinformatics/8.3.275
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Ju, J., Xu, J., Zhu, Y., Fu, X., Morel, L., & Xu, Z. (2019). A variant of the histone-binding protein SNASP contributes to mouse lupus. Frontiers in Immunology, 10, 637. https://doi.org/10.3389/fimmu.2019.00637
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kapla, J., Espigares, I. R., Ballante, F., Selent, J., & Carlsson, J. (2021). Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models? PLoS Computational Biology, 17(5), e1008936. https://doi.org/10.1371/journal.pcbi.1008936
  • Kashif, M., & Subbarao, N. (2023). Identification of potential novel inhibitors against glutamine synthetase enzyme of Leishmania major by using computational tools. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2023.2175382
  • Khan, Y. A., Andrews, N. W., & Mittra, B. (2018). ROS regulate differentiation of visceralizing Leishmania species into the virulent amastigote form. Parasitology Open, 4, e19. https://doi.org/10.1017/pao.2018.15
  • Knöckel, J., Bergmann, B., Müller, I. B., Rathaur, S., Walter, R. D., & Wrenger, C. (2008). Filling the gap of intracellular dephosphorylation in the Plasmodium falciparum vitamin B1 biosynthesis. Molecular and Biochemical Parasitology, 157(2), 241–243. https://doi.org/10.1016/j.molbiopara.2007.10.010
  • Liu, J. Y., Timm, D. E., & Hurley, T. D. (2006). Pyrithiamine as a substrate for thiamine pyrophosphokinase. Journal of Biological Chemistry, 281(10), 6601–6607. https://doi.org/10.1074/jbc.M510951200
  • Liu, Z. J., Sun, Y. J., Rose, J., Chung, Y. J., Hsiao, C. D., Chang, W. R., Kuo, I., Perozich, J., Lindahl, R., Hempel, J., & Wang, B. C. (1997). The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nature Structural Biology, 4(4), 317–326. https://doi.org/10.1038/nsb0497-317
  • Lonsdale, D. (2006). A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evidence-Based Complementary and Alternative Medicine: eCAM, 3(1), 49–59. https://doi.org/10.1093/ecam/nek009
  • MacArthur, M. W., Laskowski, R. A., & Thornton, J. M. (1994). Knowledge-based validation of protein structure coordinates derived by X-ray crystallography and NMR spectroscopy. Current Opinion in Structural Biology, 4(5), 731–737. https://doi.org/10.1016/S0959-440X(94)90172-4
  • Mandal, S., Maharjan, M., Ganguly, S., Chatterjee, M., Singh, S., Buckner, F. S., & Madhubala, R. (2009). High-throughput screening of amastigotes of Leishmania donovani clinical isolates against drugs using a colorimetric β-lactamase assay. Indian Journal of Experimental Biology, 47(6), 475–479.
  • Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sánchez, R., Melo, F., & Šali, A. (2000). Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure, 29(1), 291–325. https://doi.org/10.1146/annurev.biophys.29.1.291
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé-Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Meir, Z., & Osherov, N. (2018). Vitamin biosynthesis as an antifungal target. Journal of Fungi, 4(2), 72. https://doi.org/10.3390/jof4020072
  • Melnick, J., Lis, E., Park, J. H., Kinsland, C., Mori, H., Baba, T., Perkins, J., Schyns, G., Vassieva, O., Osterman, A., & Begley, T. P. (2004). Identification of the two missing bacterial genes involved in thiamine salvage: Thiamine pyrophosphokinase and thiamine kinase. Journal of Bacteriology, 186(11), 3660–3662. https://doi.org/10.1128/JB.186.11.3660-3662.2004
  • Mittra, B., Cortez, M., Haydock, A., Ramasamy, G., Myler, P. J., & Andrews, N. W. (2013). Iron uptake controls the generation of leishmania infective forms through regulation of ROS levels. Journal of Experimental Medicine, 210(2), 401–416. https://doi.org/10.1084/jem.20121368
  • Mittra, B., Laranjeira-Silva, M. F., de Menezes, J. P. B., Jensen, J., Michailowsky, V., & Andrews, N. W. (2016). A trypanosomatid iron transporter that regulates mitochondrial function is required for Leishmania amazonensis virulence. PLOS Pathogens, 12(1), e1005340. https://doi.org/10.1371/journal.ppat.1005340
  • Mittra, B., Laranjeira-Silva, M. F., Miguel, D. C., Menezes, J. P. B. D., & Andrews, N. W. (2017). The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence. Journal of Biological Chemistry, 292(29), 12324–12338. https://doi.org/10.1074/jbc.M116.772624
  • Mizote, T., & Nakayama, H. (1989). The thiM locus and its relation to phosphorylation of hydroxyethylthiazole in Escherichia coli. Journal of Bacteriology, 171(6), 3228–3232. https://doi.org/10.1128/jb.171.6.3228-3232.1989
  • Mizote, T., Tsuda, M., Smith, D. D. S., Nakayama, H., & Nakazawa, T. (1999). Cloning and characterization of the thiD/J gene of Escherichia coli encoding a thiamin-synthesizing bifunctional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase. Microbiology, 145(2), 495–501. https://doi.org/10.1099/13500872-145-2-495
  • Morett, E., Korbel, J. O., Rajan, E., Saab-Rincon, G., Olvera, L., Olvera, M., Schmidt, S., Snel, B., & Bork, P. (2003). Systematic discovery of analogous enzymes in thiamin biosynthesis. Nature Biotechnology, 21(7), 790–795. https://doi.org/10.1038/nbt834
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Murray, H. W., Berman, J. D., Davies, C. R., & Saravia, N. G. (2005). Advances in leishmaniasis. The Lancet, 366(9496), 1561–1577. https://doi.org/10.1016/S0140-6736(05)67629-5
  • Nishimura, H., Kawasaki, Y., Nosaka, K., Kaneko, Y., & Iwashima, A. (1991). A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae. Journal of Bacteriology, 173(8), 2716–2719. https://doi.org/10.1128/jb.173.8.2716-2719.1991
  • Nosaka, K., Kaneko, Y., Nishimura, H., & Iwashima, A. (1993). Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. The Journal of Biological Chemistry, 268(23), 17440–17447. https://doi.org/10.1016/s0021-9258(19)85354-1
  • Peapus, D. H., Chiu, H. J., Campobasso, N., Reddick, J. J., Begley, T. P., & Ealick, S. E. (2001). Structural characterization of the enzyme-substrate, enzyme-intermediate, and enzyme-product complexes of thiamin phosphate synthase. Biochemistry, 40(34), 10103–10114. https://doi.org/10.1021/bi0104726
  • Pohl, M., Sprenger, G. A., & Müller, M. (2004). A new perspective on thiamine catalysis. Current Opinion in Biotechnology, 15(4), 335–342. https://doi.org/10.1016/j.copbio.2004.06.002
  • Poola, N. R., Kalis, M., Plakogiannis, F. M., & Taft, D. R. (2003). Characterization of pentamidine excretion in the isolated perfused rat kidney. Journal of Antimicrobial Chemotherapy, 52(3), 397–404. https://doi.org/10.1093/jac/dkg341
  • Ranimol, G., Devipriya, C. B., & Sunkar, S. (2023). Docking and molecular dynamics simulation studies for the evaluation of laccase mediated biodegradation of triclosan. In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022). https://doi.org/10.2991/978-94-6463-020-6_20
  • Raschke, M., Bürkle, L., Müller, N., Nunes-Nesi, A., Fernie, A. R., Arigoni, D., Amrhein, N., & Fitzpatrick, T. B. (2007). Vitamin B1 biosynthesis in plants requires the essential iron-sulfur cluster protein, THIC. Proceedings of the National Academy of Sciences, 104(49), 19637–19642. https://doi.org/10.1073/pnas.0709597104
  • Rath, J., Gowri, V. S., Chauhan, S. C., Padmanabhan, P. K., Srinivasan, N., & Madhubala, R. (2009). A glutathione-specific aldose reductase of Leishmania donovani and its potential implications for methylglyoxal detoxification pathway. Gene, 429(1–2), 1–9. https://doi.org/10.1016/j.gene.2008.09.037
  • Reddick, J. J., Kinsland, C., Nicewonger, R., Christian, T., Downs, D. M., Winkler, M. E., & Begley, T. P. (1998). Overexpression, purification and characterization of two pyrimidine kinases involved in the biosynthesis of thiamin: 4-amino-5-hydroxymethyl-2- methylpyrimidine kinase and 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase. Tetrahedron, 54(52), 15983–15991. https://doi.org/10.1016/S0040-4020(98)01006-0
  • Rindi, G., Degiuseppe, L., & Ventura, U. (1963). Distribution and phosphorylation of oxythiamine in rat tissues. The Journal of Nutrition, 81, 147–154. https://doi.org/10.1093/jn/81.2.147
  • Rindi, G., Patrini, C., Nauti, A., Bellazzi, R., & Magni, P. (2003). Three thiamine analogues differently alter thiamine transport and metabolism in nervous tissue: An in vivo kinetic study using rats. Metabolic Brain Disease, 18(4), 245–263. https://doi.org/10.1023/B:MEBR.0000020187.98238.58
  • Rossmann, M. G., Moras, D., & Olsen, K. W. (1974). Chemical and biological evolution of a nucleotide-binding protein. Nature, 250(463), 194–199. https://doi.org/10.1038/250194a0
  • Sanemori, H., Egi, Y., & Kawasaki, T. (1976). Pathway of thiamine pyrophosphate synthesis in Micrococcus denitrificans. Journal of Bacteriology, 126(3), 1030–1036. https://doi.org/10.1128/jb.126.3.1030-1036.1976
  • Santini, S., Monchois, V., Mouz, N., Sigoillot, C., Rousselle, T., Claverie, J. M., & Abergel, C. (2008). Structural characterization of CA1462, the Candida albicans thiamine pyrophosphokinase. BMC Structural Biology, 8(1), 33. https://doi.org/10.1186/1472-6807-8-33
  • Schyns, G., Potot, S., Geng, Y., Barbosa, T. M., Henriques, A., & Perkins, J. B. (2005). Isolation and characterization of new thiamine-deregulated mutants of bacillus subtilis. Journal of Bacteriology, 187(23), 8127–8136. https://doi.org/10.1128/JB.187.23.8127-8136.2005
  • Settembre, E. C., Dorrestein, P. C., Zhai, H., Chatterjee, A., McLafferty, F. W., Begley, T. P., & Ealick, S. E. (2004). Thiamin biosynthesis in Bacillus subtilis: Structure of the thiazole synthase/sulfur carrier protein complex. Biochemistry, 43(37), 11647–11657. https://doi.org/10.1021/bi0488911
  • Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., Bank, J. A., Jumper, J. M., Salmon, J. K., Shan, Y., & Wriggers, W. (2010). Atomic-level characterization of the structural dynamics of proteins. Science, 330(6002), 341–346. https://doi.org/10.1126/science.1187409
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the opls force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci U S A., 76(9), 4350–4354. https://doi.org/10.1073/pnas.76.9.4350.
  • Tran, P. H., Korszun, Z. R., Cerritelli, S., Springhorn, S. S., & Lacks, S. A. (1998). Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of Streptococcus pneumoniae bound to S-adenosylmethionine. Structure, 6(12), 1563–1575. https://doi.org/10.1016/S0969-2126(98)00154-3
  • Tylicki, A., Łempicka, A., Romaniuk-Demonchaux, K., Czerniecki, J., Dobrzyń, P., & Strumiło, S. (2003). Effect of oxythiamin on growth rate, survival ability and pyruvate decarboxylase activity in Saccharomyces cerevisiae. Journal of Basic Microbiology, 43(6), 522–529. https://doi.org/10.1002/jobm.200310290
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3
  • Weng, Y. L., Naik, S. R., Dingelstad, N., Lugo, M. R., Kalyaanamoorthy, S., & Ganesan, A. (2021). Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Scientific Reports, 11(1), 7429. https://doi.org/10.1038/s41598-021-86471-0
  • Wightman, R., & Meacock, P. A. (2003). The THI5 gene family of Saccharomyces cerevisiae: Distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbiology, 149(6), 1447–1460. (https://doi.org/10.1099/mic.0.26194-0
  • Wrenger, C., Eschbach, M. L., Müller, I. B., Laun, N. P., Begley, T. P., & Walter, R. D. (2006). Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl- 2-methylpyrimidine. Biological Chemistry, 387(1), 41–51. https://doi.org/10.1515/BC.2006.007
  • Wrenger, C., Knöckel, J., Walter, R. D., & Müller, I. B. (2008). Vitamin B1 and B6 in the malaria parasite: Requisite or dispensable? Brazilian Journal of Medical and Biological Research, 41(2), 82–88. https://doi.org/10.1590/S0100-879X2008005000006
  • Yadav, P., Ayana, R., Garg, S., Jain, R., Sah, R., Joshi, N., Pati, S., & Singh, S. (2019). Plasmodium palmitoylation machinery engineered in E. coli for high-throughput screening of palmitoyl acyl-transferase inhibitors. FEBS Open Bio, 9(2), 248–264. https://doi.org/10.1002/2211-5463.12564
  • Zhang, Y. I., Taylor, S. V., Chiu, H. J., & Begley, T. P. (1997). Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis. Journal of Bacteriology, 179(9), 3030–3035. https://doi.org/10.1128/jb.179.9.3030-3035.1997

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.