138
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Role of death-associated protein kinase 1 (DAPK1) in retinal degenerative diseases: an in-silico approach towards therapeutic intervention

ORCID Icon & ORCID Icon
Pages 5686-5698 | Received 01 Apr 2023, Accepted 15 Jun 2023, Published online: 30 Jun 2023

References

  • Abdulwahab A. Oyouni, A. (2022). Biological and genetic basis of various human genetic disorders and the application of biological and genetic markers. Journal of King Saud University - Science, 34(4), 101961. https://doi.org/10.1016/j.jksus.2022.101961
  • Anasa, V. V., Manickam, M., Talwar, P., & Ravanan, P. (2018). Identification of ASB7 as ER stress responsive gene through a genome wide in silico screening for genes with ERSE. PloS One, 13(4), e0194310. https://doi.org/10.1371/journal.pone.0194310
  • Anighoro, A. (2020). Underappreciated chemical interactions in protein–ligand complexes. In A. Heifetz (Ed.), Quantum mechanics in drug discovery (pp. 75–86). Springer US.
  • Ardeljan, C. P., Ardeljan, D., Abu-Asab, M., & Chan, C.-C. (2014). Inflammation and cell death in age-related macular degeneration: An immunopathological and ultrastructural model. Journal of Clinical Medicine, 3(4), 1542–1560. https://doi.org/10.3390/jcm3041542
  • Aslan, T., Yenenler-Kutlu, A., Gerlevik, U., Aktuğlu Zeybek, A. Ç., Kıykım, E., Sezerman, O. U., & Birgul Iyison, N. (2022). Identifying and elucidating the roles of Y198N and Y204F mutations in the PAH enzyme through molecular dynamic simulations. Journal of Biomolecular Structure & Dynamics, 40(19), 9018–9029. https://doi.org/10.1080/07391102.2021.1921619
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Călin, E. F., Patoni Popescu, S. I., Coman Cernat, C. C., Patoni, C., Popescu, M.-N., & Mușat, O. (2021). Lipofuscin: A key compound in ophthalmic practice. Romanian Journal of Ophthalmology, 65(2), 109–113. https://doi.org/10.22336/rjo.2021.23
  • Chen, X., Liu, J., Gu, X., & Ding, F. (2008). Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats. Brain Research, 1238, 189–198. https://doi.org/10.1016/j.brainres.2008.07.051
  • Cottet, S., Michaut, L., Boisset, G., Schlecht, U., Gehring, W., & Schorderet, D. F. (2006). Biological characterization of gene response in Rpe65-/- mouse model of Leber’s congenital amaurosis during progression of the disease. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20(12), 2036–2049. https://doi.org/10.1096/fj.06-6211com
  • Cox, J. T., Eliott, D., & Sobrin, L. (2021). Inflammatory complications of intravitreal anti-VEGF injections. Journal of Clinical Medicine, 10(5), 981.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Duffy, A. M., Bouchier-Hayes, D. J., & Harmey, J. H. (2013). Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: Autocrine signalling by VEGF. In Madame Curie Bioscience Database. Landes Bioscience.
  • Dunaief, J. L., Dentchev, T., Ying, G.-S., & Milam, A. H. (2002). The role of apoptosis in age-related macular degeneration. Archives of Ophthalmology (Chicago, IL: 1960), 120(11), 1435–1442. https://doi.org/10.1001/archopht.120.11.1435
  • Elkamhawy, A., Paik, S., Ali, E. M. H., Hassan, A. H. E., Kang, S. J., Lee, K., & Roh, E. J. (2022). Identification of novel aryl carboxamide derivatives as death-associated protein kinase 1 (DAPK1) inhibitors with anti-proliferative activities: design, synthesis, in vitro, and in silico biological studies. Pharmaceuticals, 15(9), 1050. https://doi.org/10.3390/ph15091050
  • Falavarjani, K. G., & Nguyen, Q. D. (2013). Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye (London, England), 27(7), 787–794. https://doi.org/10.1038/eye.2013.107
  • Farag, A. K., Hassan, A. H. E., Jeong, H., Kwon, Y., Choi, J. G., Oh, M. S., Park, K. D., Kim, Y. K., & Roh, E. J. (2019). First-in-class DAPK1/CSF1R dual inhibitors: Discovery of 3, 5-dimethoxy-N-(4-(4-methoxyphenoxy)-2-((6-morpholinopyridin-3-yl) amino) pyrimidin-5-yl) benzamide as a potential anti-tauopathies agent. European Journal of Medicinal Chemistry, 162, 161–175. https://doi.org/10.1016/j.ejmech.2018.10.057
  • Firoz, A., & Talwar, P. (2022). COVID-19 and retinal degenerative diseases: Promising link “Kaempferol”. Current Opinion in Pharmacology, 64, 102231. https://doi.org/10.1016/j.coph.2022.102231
  • Firoz, A., Ravanan, P., Saha, P., Prashar, T., & Talwar, P. (2023). Genome-wide screening and identification of potential kinases involved in endoplasmic reticulum stress responses. Life Sciences, 317, 121452. https://doi.org/10.1016/j.lfs.2023.121452
  • Fonseka, P., Pathan, M., Chitti, S. V., Kang, T., & Mathivanan, S. (2021). FunRich enables enrichment analysis of OMICs datasets. Journal of Molecular Biology, 433(11), 166747. https://doi.org/10.1016/j.jmb.2020.166747
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Fuglebakk, E., Echave, J., & Reuter, N. (2012). Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics (Oxford, England), 28(19), 2431–2440. https://doi.org/10.1093/bioinformatics/bts445
  • Ghafouri-Fard, S., Shoorei, H., Bahroudi, Z., Abak, A., Majidpoor, J., & Taheri, M. (2021). An update on the role of miR-124 in the pathogenesis of human disorders. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 135, 111198. https://doi.org/10.1016/j.biopha.2020.111198
  • Ghosh, P., Singh, R., Ganeshpurkar, A., Swetha, R., Kumar, D., Singh, S. K., & Kumar, A. (2022). Identification of potential death-associated protein kinase-1 (DAPK1) inhibitors by an integrated ligand-based and structure-based computational drug design approach. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2022.2158935
  • Hooper, L. C., Chin, M. S., Detrick, B., & Hooks, J. J. (2005). Retinal degeneration in experimental coronavirus retinopathy (ECOR) is associated with increased TNF-α, soluble TNFR2 and altered TNF-α signaling. Journal of Neuroimmunology, 166(1-2), 65–74. https://doi.org/10.1016/j.jneuroim.2005.05.018
  • Hottin, C., Perron, M., & Roger, J. E. (2022). GSK3 is a central player in retinal degenerative diseases but a challenging therapeutic target. Cells, 11(18), 2898. https://doi.org/10.3390/cells11182898
  • Hu, M., Ge, M.-R., Li, H.-X., Zhang, B., & Li, G. (2022). Identification of DAPK1 as an autophagy-related biomarker for myotonic dystrophy type 1. Frontiers in Genetics, 13, 1022640. https://doi.org/10.3389/fgene.2022.1022640
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ju, L., Wen, X., Wang, C., Wei, Y., Peng, Y., Ding, Y., Feng, L., & Shu, L. (2017). Salidroside, a natural antioxidant, improves β-cell survival and function via activating AMPK pathway. Frontiers in Pharmacology, 8, 749. https://doi.org/10.3389/fphar.2017.00749
  • Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., & Ma’ayan, A. (2016). Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90–7. https://doi.org/10.1093/nar/gkw377
  • Lachmann, A., Torre, D., Keenan, A. B., Jagodnik, K. M., Lee, H. J., Wang, L., Silverstein, M. C., & Ma’ayan, A. (2018). Massive mining of publicly available RNA-seq data from human and mouse. Nature Communications, 9(1), 1366. https://doi.org/10.1038/s41467-018-03751-6
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Li, K., van Delft, M. F., & Dewson, G. (2021). Too much death can kill you: Inhibiting intrinsic apoptosis to treat disease. The EMBO Journal, 40(14), e107341. https://doi.org/10.15252/embj.2020107341
  • Lobanov, M. I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706.
  • Maiorov, V. N., & Crippen, G. M. (1994). Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. Journal of Molecular Biology, 235(2), 625–634. https://doi.org/10.1006/jmbi.1994.1017
  • Mansour, H. M., Mohamed, A. F., El-Khatib, A. S., & Khattab, M. (2023). Kinases control of regulated cell death revealing druggable targets for Parkinson’s disease. Ageing Research Reviews, 85, 101841. https://doi.org/10.1016/j.arr.2022.101841
  • Marigo, V. (2007). Programmed cell death in retinal degeneration: Targeting apoptosis in photoreceptors as potential therapy for retinal degeneration. Cell Cycle (Georgetown, Tex.), 6(6), 652–655. https://doi.org/10.4161/cc.6.6.4029
  • Melkonian, M., Juigné, C., Dameron, O., Rabut, G., & Becker, E. (2022). Towards a reproducible interactome: Semantic-based detection of redundancies to unify protein–protein interaction databases. Bioinformatics (Oxford, England), 38(6), 1685–1691. https://doi.org/10.1093/bioinformatics/btac013
  • Moore, J., Stanitski, C., & Jurs, P. (2009). Principles of chemistry: The molecular science. Cengage Learning.
  • Moreno-García, A., Kun, A., Calero, O., Medina, M., & Calero, M. (2018). An overview of the role of lipofuscin in age-related neurodegeneration. Frontiers in Neuroscience, 12, 464. https://doi.org/10.3389/fnins.2018.00464
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murugeswari, P., Firoz, A., Murali, S., Vinekar, A., Krishna, L., Anandula, V. R., Jeyabalan, N., Chevour, P., Jayadev, C., Shetty, R., Carpentier, G., Kumaramanickavel, G., Ghosh, A., & Das, D. (2020). Vitamin-D3 (α-1, 25 (OH) 2D3) protects retinal pigment epithelium from hyperoxic insults. Investigative Ophthalmology & Visual Science, 61(2), 4–4. https://doi.org/10.1167/iovs.61.2.4
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Okamoto, M., Takayama, K., Shimizu, T., Ishida, K., Takahashi, O., & Furuya, T. (2009). Identification of death-associated protein kinases inhibitors using structure-based virtual screening. Journal of Medicinal Chemistry, 52(22), 7323–7327. https://doi.org/10.1021/jm901191q
  • Patel, S. S., Patel, S., & Parikh, P. (2022). Future treatment of Diabetes–Tyrosine Kinase inhibitors. Journal of Diabetes & Metabolic Disorders, 22(1), 61–71. https://doi.org/10.1007/s40200-022-01164-3
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Pillich, R. T., Chen, J., Rynkov, V., Welker, D., & Pratt, D. (2017). NDEx: A community resource for sharing and publishing of biological networks. Methods in Molecular Biology (Clifton, N.J.), 1558, 271–301.
  • Piñero, J., Ramírez-Anguita, J. M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F., & Furlong, L. I. (2020). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Research, 48(D1), D845–D855. https://doi.org/10.1093/nar/gkz1021
  • Qin, X., & Zou, H. (2022). The role of lipopolysaccharides in diabetic retinopathy. BMC Ophthalmology, 22(1), 86. https://doi.org/10.1186/s12886-022-02296-z
  • Rose, P. W., et al. (2016). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45(D1), D271–D281. https://doi.org/10.1093/nar/gkw1000.
  • Rychkov, G., & Petukhov, M. (2007). Joint neighbors approximation of macromolecular solvent accessible surface area. Journal of Computational Chemistry, 28(12), 1974–1989. https://doi.org/10.1002/jcc.20550
  • Sarkar, A., Jayesh Sodha, S., Junnuthula, V., Kolimi, P., & Dyawanapelly, S. (2022). Novel and investigational therapies for wet and dry age-related macular degeneration. Drug Discovery Today. 27(8), 2322–2332. https://doi.org/10.1016/j.drudis.2022.04.013
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Shin, J. I., & Bayry, J. (2013). A role for IL-17 in age-related macular degeneration. Nature Reviews. Immunology, 13(9), 701–701. https://doi.org/10.1038/nri3459-c1
  • Shukal, D. K., Malaviya, P. B., & Sharma, T. (2022). Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Human & Experimental Toxicology, 41, 9603271211063165. https://doi.org/10.1177/09603271211063165
  • Simon, M. V., Basu, S. K., Qaladize, B., Grambergs, R., Rotstein, N. P., & Mandal, N. (2021). Sphingolipids as critical players in retinal physiology and pathology. Journal of Lipid Research, 62, 100037. https://doi.org/10.1194/jlr.TR120000972
  • Singh, P., & Talwar, P. (2017). Exploring putative inhibitors of Death Associated Protein Kinase 1 (DAPK1) via targeting Gly-Glu-Leu (GEL) and Pro-Glu-Asn (PEN) substrate recognition motifs. Journal of Molecular Graphics & Modelling, 77, 153–167. https://doi.org/10.1016/j.jmgm.2017.08.001
  • Singh, P., Ravanan, P., & Talwar, P. (2016). Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Frontiers in Molecular Neuroscience, 9, 46. https://doi.org/10.3389/fnmol.2016.00046
  • Tan, T.-E., Fenner, B. J., Barathi, V. A., Tun, S. B. B., Wey, Y. S., Tsai, A. S. H., Su, X., Lee, S. Y., Cheung, C. M. G., Wong, T. Y., Mehta, J. S., & Teo, K. Y. C. (2021). Gene-based therapeutics for acquired retinal disease: opportunities and progress. Frontiers in Genetics, 12, 795010. https://doi.org/10.3389/fgene.2021.795010
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR gene therapy: Applications, limitations, and implications for the future. Frontiers in Oncology, 10, 1387. https://doi.org/10.3389/fonc.2020.01387
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server. Bioinformatics (Oxford, England), 35(9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Wang, S., Wang, X., Cheng, Y., Ouyang, W., Sang, X., Liu, J., Su, Y., Liu, Y., Li, C., Yang, L., Jin, L., & Wang, Z. (2019). Autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses in AMD: from mechanisms to therapeutic potential. Oxidative Medicine and Cellular Longevity, 2019, 3632169. https://doi.org/10.1155/2019/3632169
  • Xu, L.-Z., Li, B.-Q., Li, F.-Y., Li, Y., Qin, W., Zhao, Y., & Jia, J.-P. (2023). NMDA receptor GluN2B subunit is involved in excitotoxicity mediated by death-associated protein kinase 1 in Alzheimer’s disease. Journal of Alzheimer’s Disease, 91(2), 877–893. https://doi.org/10.3233/JAD-220747
  • Yang, Y., Jiang, X., Li, X., Sun, K., Zhu, X., & Zhou, B. (2022). Specific ablation of Hippo signalling component Yap1 in retinal progenitors and Müller cells results in late onset retinal degeneration. Journal of Cellular Physiology, 237(6), 2673–2689. https://doi.org/10.1002/jcp.30757
  • Zuba-Surma, E. K., et al. (2012). Stem cells as a novel tool for drug screening and treatment of degenerative diseases. Current Pharmaceutical Design, 18(18), 2644–2656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.