538
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In-silico study of protein-protein interactions in wheat blast using docking and molecular dynamics simulation approach

&
Pages 5747-5757 | Received 06 Feb 2023, Accepted 17 Jun 2023, Published online: 25 Jun 2023

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389
  • Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The single global macromolecular structure archive. Protein crystallography: Methods and protocols (pp. 627–641).
  • Campbell, J., Zhang, H., Giroux, M. J., Feiz, L., Jin, Y., Wang, M., Chen, X., & Huang, L. (2012). A mutagenesis-derived broad-spectrum disease resistance locus in wheat. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 125(2), 391–404. https://doi.org/10.1007/s00122-012-1841-7 22446929
  • Ceresini, P. C., Castroagudín, V. L., Rodrigues, F. Á., Rios, J. A., Eduardo Aucique-Pérez, C., Moreira, S. I., Alves, E., Croll, D., & Maciel, J. L. N. (2018). Wheat Blast: Past, Present, and Future. Annual Review of Phytopathology, 56, 427–456. https://doi.org/10.1146/annurev-phyto-080417-050036 29975608
  • Chen, Y., Yu, P., Luo, J., & Jiang, Y. (2003). Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 14(12), 859–865. https://doi.org/10.1007/s00335-003-2296-6
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Cruz, C. D., Bockus, W. W., Stack, J. P., Tang, X., Valent, B., Pedley, K. F., & Peterson, G. L. (2012). Preliminary Assessment of Resistance Among U.S. Wheat Cultivars to the Triticum Pathotype of Magnaporthe oryzae. Plant Disease, 96(10), 1501–1505. https://doi.org/10.1094/PDIS-11-11-0944-RE 30727304
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: Assessment of protein models with three-dimensional profiles. In Methods in enzymology (Vol. 277, pp. 396–404). Academic Press.
  • Emanuelsson, O., Brunak, S., Von Heijne, G., & Nielsen, H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2(4), 953–971. https://doi.org/10.1038/nprot.2007.131
  • Fernandez, J., & Orth, K. (2018). Rise of a cereal killer: The biology of Magnaporthe oryzae biotrophic growth. Trends in Microbiology, 26(7), 582–597. https://doi.org/10.1016/j.tim.2017.12.007
  • Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Guo, H., Du, Q., Xie, Y., Xiong, H., Zhao, L., Gu, J., Zhao, S., Song, X., Islam, T., & Liu, L. (2021). Identification of rice blast loss-of-function mutant alleles in the wheat genome as a new strategy for wheat blast resistance breeding. Frontiers in Genetics, 12, 623419. https://doi.org/10.3389/fgene.2021.623419
  • Heo, L., Lee, H., & Seok, C. (2016). GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking. Scientific Reports, 6(1), 32153. https://doi.org/10.1038/srep32153
  • Ho, K. H., Su, S. C., & Lee, K. R. (2021). Molecular docking and simulation of the interaction of sulbactam with Acinetobacter baumannii BaeSR and AdeSR. Biochemical and Biophysical Research Communications, 580, 81–86. https://doi.org/10.1016/j.bbrc.2021.09.072
  • Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Laugraud, A., Letunic, I., Lonsdale, D., … Yeats, C. (2009). InterPro: The integrative protein signature database. Nucleic Acids Research, 37(Database issue), D211–D215. https://doi.org/10.1093/nar/gkn785
  • Igarashi, K., Kashiwagi, K., Hamasaki, H., Miura, A., Kakegawa, T., Hirose, S., & Matsuzaki, S. (1986). Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. Journal of Bacteriology, 166(1), 128–134. https://doi.org/10.1128/jb.166.1.128-134.1986 3514574
  • Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., Anh, V. L., Cumagun, C. J. R., Chuma, I., Terauchi, R., Kato, K., Mitchell, T., Valent, B., Farman, M., & Tosa, Y. (2017). Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science (New York, N.Y.), 357(6346), 80–83. https://doi.org/10.1126/science.aam9654 28684523
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., & Mori, N. (2000). Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. Journal of General Plant Pathology, 66, 30–47. https://doi.org/10.1007/PL00012919
  • Kim, Y. A., Moon, H., & Park, C. J. (2019). CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice, 12(1), 1–13. https://doi.org/10.1186/s12284-019-0325-7
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297. https://doi.org/10.1093/nar/gks493
  • Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery.
  • Leckie, F., Mattei, B., Capodicasa, C., Hemmings, A., Nuss, L., Aracri, B., De Lorenzo, G., & Cervone, F. (1999). The specificity of polygalacturonase-inhibiting protein (PGIP): A single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. The EMBO Journal, 18(9), 2352–2363. https://doi.org/10.1093/emboj/18.9.2352
  • Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., Zhou, X., Zhu, X., Chen, Z., Wang, J., Zhao, W., Ma, B., Qin, P., Chen, W., Wang, Y., … Chen, X. (2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 170(1), 114–126.e15. https://doi.org/10.1016/j.cell.2017.06.008
  • Lu, H.-P., Luo, T., Fu, H.-W., Wang, L., Tan, Y.-Y., Huang, J.-Z., Wang, Q., Ye, G.-Y., Gatehouse, A. M. R., Lou, Y.-G., & Shu, Q.-Y. (2018). Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nature Plants, 4(6), 338–344. https://doi.org/10.1038/s41477-018-0152-7 29735983
  • Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., Geer, R. C., He, J., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., & Bryant, S. H. (2015). CDD: NCBI's conserved domain database. Nucleic Acids Research, 43(Database issue), D222–D226. https://doi.org/10.1093/nar/gku1221
  • Monzon, V., Paysan-Lafosse, T., Wood, V., & Bateman, A. (2022). Reciprocal best structure hits: Using AlphaFold models to discover distant homologues. Bioinformatics Advances, 2(1), vbac072. https://doi.org/10.1093/bioadv/vbac072
  • Perez-Riba, A., & Itzhaki, L. S. (2019). The tetratricopeptide-repeat motif is a versatile platform that enables diverse modes of molecular recognition. Current Opinion in Structural Biology, 54, 43–49. https://doi.org/10.1016/j.sbi.2018.12.004
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK server: Interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics (Oxford, England), 30(12), 1771–1773. https://doi.org/10.1093/bioinformatics/btu097
  • Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2005). NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33(Database issue), D501–D504. https://doi.org/10.1093/nar/gki025
  • Reva, B. A., Finkelstein, A. V., & Skolnick, J. (1998). What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Folding & Design, 3(2), 141–147. https://doi.org/10.1016/s1359-0278(98)00019-4
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Singh, P. K., Gahtyari, N. C., Roy, C., Roy, K. K., He, X., Tembo, B., Xu, K., Juliana, P., Sonder, K., Kabir, M. R., & Chawade, A. (2021). Wheat blast: A disease spreading by intercontinental jumps and its management strategies. Frontiers in Plant Science, 12, 710707. https://doi.org/10.3389/fpls.2021.710707
  • Skolnick, J., Gao, M., Zhou, H., & Singh, S. (2021). AlphaFold 2: Why it works and its implications for understanding the relationships of protein sequence, structure, and function. Journal of Chemical Information and Modeling, 61(10), 4827–4831. https://doi.org/10.1021/acs.jcim.1c01114
  • Sonah, H., Deshmukh, R. K., & Bélanger, R. R. (2016). Computational prediction of effector proteins in fungi: Opportunities and challenges. Frontiers in Plant Science, 7, 126. https://doi.org/10.3389/fpls.2016.00126
  • Sperschneider, J., Dodds, P. N., Singh, K. B., & Taylor, J. M. (2018). ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning. The New Phytologist, 217(4), 1764–1778. https://doi.org/10.1111/nph.14946 29243824
  • Sperschneider, J., & Dodds, P. N. (2022). EffectorP 3.0: Prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Molecular Plant-Microbe Interactions: MPMI, 35(2), 146–156. https://doi.org/10.1094/MPMI-08-21-0201-R
  • Sukhwal, A., & Sowdhamini, R. (2015). PPCheck: A webserver for the quantitative analysis of protein-protein interfaces and prediction of residue hotspots. Bioinformatics and Biology Insights, 9, BBI.S25928. https://doi.org/10.4137/BBI.S25928
  • Takabayashi, N., Tosa, Y., Oh, H. S., & Mayama, S. (2002). A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology, 92(11), 1182–1188. https://doi.org/10.1094/PHYTO.2002.92.11.1182
  • Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2022). SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 40(7), 1023–1025. https://doi.org/10.1038/s41587-021-01156-3
  • Turner, P., Stambulchik, E., & Unix-Like, A. (2012). Grace (plotting tool).
  • UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
  • Urashima, A. S., Igarashi, S., & Kato, H. (1993). Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Disease, 77(12), 1211–1216. https://doi.org/10.1094/PD-77-1211
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Wang, S., Asuke, S., Vy, T. T. P., Inoue, Y., Chuma, I., Win, J., Kato, K., & Tosa, Y. (2018). A New Resistance Gene in Combination with Rmg8 Confers Strong Resistance Against Triticum Isolates of Pyricularia oryzae in a Common Wheat Landrace. Phytopathology, 108(11), 1299–1306. https://doi.org/10.1094/PHYTO-12-17-0400-R 29767554
  • Warren, R. F., Henk, A., Mowery, P., Holub, E., & Innes, R. W. (1998). A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. The Plant Cell, 10(9), 1439–1452. https://doi.org/10.1105/tpc.10.9.1439
  • Wu, Q., Wang, Y., Liu, L. N., Shi, K., & Li, C. Y. (2021). Comparative genomics and gene pool analysis reveal the decrease of genome diversity and gene number in rice blast fungi by stable adaption with rice. Journal of Fungi, 8(1), 5. https://doi.org/10.3390/jof8010005
  • Yokotani, N., Sato, Y., Tanabe, S., Chujo, T., Shimizu, T., Okada, K., Yamane, H., Shimono, M., Sugano, S., Takatsuji, H., Kaku, H., Minami, E., & Nishizawa, Y. (2013). WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany, 64(16), 5085–5097. https://doi.org/10.1093/jxb/ert298
  • Zhang, Y., Wei, J., Qi, Y., Li, J., Amin, R., Yang, W., & Liu, D. (2020). Predicating the effector proteins secreted by Puccinia triticina through transcriptomic analysis and multiple prediction approaches. Frontiers in Microbiology, 11, 538032. https://doi.org/10.3389/fmicb.2020.538032
  • Zhou, X., Liao, H., Chern, M., Yin, J., Chen, Y., Wang, J., Zhu, X., Chen, Z., Yuan, C., Zhao, W., Wang, J., Li, W., He, M., Ma, B., Wang, J., Qin, P., Chen, W., Wang, Y., Liu, J., … Chen, X. (2018). Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3174–3179. https://doi.org/10.1073/pnas.1705927115
  • Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu, G., Bellizzi, M., & Wang, G.-L. (2006). The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions : MPMI, 19(11), 1216–1228. https://doi.org/10.1094/MPMI-19-1216

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.