184
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structure-based identification of potential inhibitors of ribosomal protein S6 kinase 1, targeting cancer therapy: a combined docking and molecular dynamics simulations approach

, , , , , , , & ORCID Icon show all
Pages 5758-5769 | Received 15 May 2023, Accepted 17 Jun 2023, Published online: 26 Jun 2023

References

  • Andricopulo, A. D., Guido, R. V., & Oliva, G. (2008). Virtual screening and its integration with modern drug design technologies. Current Medicinal Chemistry, 15(1), 37–46. https://doi.org/10.2174/092986708783330683
  • Babchia, N., Calipel, A., Mouriaux, F., Faussat, A.-M., & Mascarelli, F. (2010). The PI3K/Akt and mTOR/P70S6K signaling pathways in human uveal melanoma cells: Interaction with B-Raf/ERK. Investigative Ophthalmology & Visual Science, 51(1), 421–429. https://doi.org/10.1167/iovs.09-3974
  • Baell, J. B. (2016). Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). Journal of Natural Products, 79(3), 616–628. https://doi.org/10.1021/acs.jnatprod.5b00947
  • Benjamin, D., Colombi, M., Moroni, C., & Hall, M. N. (2011). Rapamycin passes the torch: A new generation of mTOR inhibitors. Nature Reviews. Drug Discovery, 10(11), 868–880. https://doi.org/10.1038/nrd3531
  • Biovia, D. S. (2017). Discovery studio visualizer. San Diego, CA, USA, 936.
  • Caron, G., Kihlberg, J., Goetz, G., Ratkova, E., Poongavanam, V., & Ermondi, G. (2021). Steering new drug discovery campaigns: Permeability, solubility, and physicochemical properties in the bro5 chemical space. ACS Medicinal Chemistry Letters, 12(1), 13–23. https://doi.org/10.1021/acsmedchemlett.0c00581
  • Cornu, M., Albert, V., & Hall, M. N. (2013). mTOR in aging, metabolism, and cancer. Current Opinion in Genetics & Development, 23(1), 53–62. https://doi.org/10.1016/j.gde.2012.12.005
  • Couty, S., Westwood, I. M., Kalusa, A., Cano, C., Travers, J., Boxall, K., Chow, C. L., Burns, S., Schmitt, J., Pickard, L., Barillari, C., McAndrew, P. C., Clarke, P. A., Linardopoulos, S., Griffin, R. J., Aherne, G. W., Raynaud, F. I., Workman, P., Jones, K., & van Montfort, R. L. M. (2013). The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design. Oncotarget, 4(10), 1647–1661. https://doi.org/10.18632/oncotarget.1255
  • da Hora Borges, M. A., Passos, F. R. S., Quintans, J. d. S. S., & Azeredo, F. J. (2023). Hecogenin and its derivates: A pharmacology review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 159, 114251. https://doi.org/10.1016/j.biopha.2023.114251
  • Dahiya, R., Mohammad, T., Roy, S., Anwar, S., Gupta, P., Haque, A., Khan, P., Kazim, S. N., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Investigation of inhibitory potential of quercetin to the pyruvate dehydrogenase kinase 3: Towards implications in anticancer therapy. International Journal of Biological Macromolecules, 136, 1076–1085. https://doi.org/10.1016/j.ijbiomac.2019.06.158
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Dann, S. G., Selvaraj, A., & Thomas, G. (2007). mTOR Complex1–S6K1 signaling: At the crossroads of obesity, diabetes and cancer. Trends in Molecular Medicine, 13(6), 252–259. https://doi.org/10.1016/j.molmed.2007.04.002
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. In Protein dynamics (vol. 1084, pp. 193–226). Totowa, NJ: Humana Press.
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr, 40, 82–92.
  • Elsayed, H. E., Ebrahim, H. Y., Haggag, E. G., Kamal, A. M., & El Sayed, K. A. (2017). Rationally designed hecogenin thiosemicarbazone analogs as novel MEK inhibitors for the control of breast malignancies. Bioorganic & Medicinal Chemistry, 25(24), 6297–6312. https://doi.org/10.1016/j.bmc.2017.09.033
  • Fenton, T. R., & Gout, I. T. (2011). Functions and regulation of the 70 kDa ribosomal S6 kinases. The International Journal of Biochemistry & Cell Biology, 43(1), 47–59. https://doi.org/10.1016/j.biocel.2010.09.018
  • Ferreira, L. L., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Gasparotto, J., Somensi, N., Kunzler, A., Girardi, C. S., de Bittencourt Pasquali, M. A., Ramos, V. M., Simoes-Pires, A., Quintans-Junior, L. J., Branco, A., Moreira, J. C. F., & Gelain, D. P. (2014). Hecogenin acetate inhibits reactive oxygen species production and induces cell cycle arrest and senescence in the A549 human lung cancer cell line. Anti-Cancer Agents in Medicinal Chemistry, 14(8), 1128–1135. https://doi.org/10.2174/1871520614666140408151751
  • Guertin, D. A., & Sabatini, D. M. (2009). The pharmacology of mTOR inhibition. Science Signaling, 2(67), pe24. https://doi.org/10.1126/scisignal.267pe24
  • Hassan, N. M., Alhossary, A. A., Mu, Y., & Kwoh, C.-K. (2017). Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-15571-7
  • Haug, E., Arora, J., & Matsui, K. (1976). A steepest-descent method for optimization of mechanical systems. Journal of Optimization Theory and Applications, 19(3), 401–424. https://doi.org/10.1007/BF00941484
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hodgson, J. (2001). ADMET—turning chemicals into drugs. Nature Biotechnology, 19(8), 722–726. https://doi.org/10.1038/90761
  • Holz, M. K., & Blenis, J. (2005). Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. The Journal of Biological Chemistry, 280(28), 26089–26093. https://doi.org/10.1074/jbc.M504045200
  • Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and autodock vina with autodocktools: A tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550, 92037.
  • Iserles, A. (1986). Generalized leapfrog methods. IMA Journal of Numerical Analysis, 6(4), 381–392. https://doi.org/10.1093/imanum/6.4.381
  • Junaid, M., Khan, M. T., Malik, S. I., & Wei, D.-Q. (2019). Insights into the mechanisms of the pyrazinamide resistance of three pyrazinamidase mutants N11K, P69T, and D126N. Journal of Chemical Information and Modeling, 59(1), 498–508. https://doi.org/10.1021/acs.jcim.8b00525
  • Junaid, M., Li, C.-D., Li, J., Khan, A., Ali, S. S., Jamal, S. B., Saud, S., Ali, A., & Wei, D.-Q. (2021). Structural insights of catalytic mechanism in mutant pyrazinamidase of Mycobacterium tuberculosis. Journal of Biomolecular Structure & Dynamics, 39(9), 3172–3185. https://doi.org/10.1080/07391102.2020.1761879
  • Khan, S., Khan, F. I., Mohammad, T., Khan, P., Hasan, G. M., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. I. (2018). Exploring molecular insights into the interaction mechanism of cholesterol derivatives with the Mce4A: A combined spectroscopic and molecular dynamic simulation studies. International Journal of Biological Macromolecules, 111, 548–560. https://doi.org/10.1016/j.ijbiomac.2017.12.160
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Lee, J. J., Loh, K., & Yap, Y.-S. (2015). PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biology & Medicine, 12(4), 342–354. https://doi.org/10.7497/j.issn.2095-3941.2015.0089
  • Li, C-x., Li, T-h., Zhu, M., Lai, J., & Wu, Z-p (2021). Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. Journal of Functional Foods, 85, 104638. https://doi.org/10.1016/j.jff.2021.104638
  • Lin, Y., Pan, D., Li, J., Zhang, L., & Shao, X. (2017). Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. The Journal of Chemical Physics, 146(12), 124108. https://doi.org/10.1063/1.4978807
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Magnuson, B., Ekim, B., & Fingar, D. C. (2012). Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. The Biochemical Journal, 441(1), 1–21. https://doi.org/10.1042/BJ20110892
  • Martinet, W., De Loof, H., & De Meyer, G. R. (2014). mTOR inhibition: A promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis, 233(2), 601–607. https://doi.org/10.1016/j.atherosclerosis.2014.01.040
  • Meyuhas, O., & Dreazen, A. (2009). Ribosomal protein S6 kinase: From TOP mRNAs to cell size. Progress in Molecular Biology and Translational Science, 90, 109–153. https://doi.org/10.1016/S1877-1173(09)90003-5
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Modarresi, M., Hajialyani, M., Moasefi, N., Ahmadi, F., & Hosseinzadeh, L. (2019). Evaluation of the cytotoxic and apoptogenic effects of glabridin and its effect on cytotoxicity and apoptosis induced by doxorubicin toward cancerous cells. Advanced Pharmaceutical Bulletin, 9(3), 481–489. https://doi.org/10.15171/apb.2019.057
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings in Bioinformatics, 22(4), bbaa279. https://doi.org/10.1093/bib/bbaa279
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R., Chand, R., Aparna, S., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-22631-z
  • Naqvi, A. A., Mohammad, T., Hasan, G. M., & Hassan, M. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Naz, F., Khan, F. I., Mohammad, T., Khan, P., Manzoor, S., Hasan, G. M., Lobb, K. A., Luqman, S., Islam, A., Ahmad, F., & Hassan, M. I. (2018). Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression. International Journal of Biological Macromolecules, 107(Pt B), 2580–2589. https://doi.org/10.1016/j.ijbiomac.2017.10.143
  • Niwa, H., Mikuni, J., Sasaki, S., Tomabechi, Y., Honda, K., Ikeda, M., Ohsawa, N., Wakiyama, M., Handa, N., Shirouzu, M., Honma, T., Tanaka, A., & Yokoyama, S. (2014). Crystal structures of the S6K1 kinase domain in complexes with inhibitors. Journal of Structural and Functional Genomics, 15(3), 153–164. https://doi.org/10.1007/s10969-014-9188-8
  • Palomo, V., Nozal, V., Rojas‐Prats, E., Gil, C., & Martinez, A. (2021). Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. British Journal of Pharmacology, 178(6), 1316–1335. https://doi.org/10.1111/bph.15221
  • Panwalkar, A., Verstovsek, S., & Giles, F. J. (2004). Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer, 100(4), 657–666. https://doi.org/10.1002/cncr.20026
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Qin, J., Rajaratnam, R., Feng, L., Salami, J., Barber-Rotenberg, J. S., Domsic, J., Reyes-Uribe, P., Liu, H., Dang, W., Berger, S. L., Villanueva, J., Meggers, E., & Marmorstein, R. (2015). Development of organometallic S6K1 inhibitors. Journal of Medicinal Chemistry, 58(1), 305–314. https://doi.org/10.1021/jm5011868
  • Raimondi, C., & Falasca, M. (2011). Targeting PDK1 in cancer. Current Medicinal Chemistry, 18(18), 2763–2769. https://doi.org/10.2174/092986711796011238
  • Richmond, T. J. (1984). Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect. Journal of Molecular Biology, 178(1), 63–89. https://doi.org/10.1016/0022-2836(84)90231-6
  • Romeo, Y., Zhang, X., & Roux, P. P. (2012). Regulation and function of the RSK family of protein kinases. The Biochemical Journal, 441(2), 553–569. https://doi.org/10.1042/BJ20110289
  • Rose, G. D., & Wolfenden, R. (1993). Hydrogen bonding, hydrophobicity, packing, and protein folding. Annual Review of Biophysics and Biomolecular Structure, 22, 381–415. https://doi.org/10.1146/annurev.bb.22.060193.002121
  • Ruvinsky, I., & Meyuhas, O. (2006). Ribosomal protein S6 phosphorylation: From protein synthesis to cell size. Trends in Biochemical Sciences, 31(6), 342–348. https://doi.org/10.1016/j.tibs.2006.04.003
  • Schein, C. H. (1990). Solubility as a function of protein structure and solvent components. Bio/Technology (Nature Publishing Company), 8(4), 308–317. https://doi.org/10.1038/nbt0490-308
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & Van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal: EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shum, M., Bellmann, K., St-Pierre, P., & Marette, A. (2016). Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice. Diabetologia, 59(3), 592–603. https://doi.org/10.1007/s00125-015-3839-6
  • Sridharan, S., & Basu, A. (2020). Distinct roles of mTOR targets S6K1 and S6K2 in breast cancer. International Journal of Molecular Sciences, 21(4), 1199. https://doi.org/10.3390/ijms21041199
  • Tavares, M. R., Pavan, I. C., Amaral, C. L., Meneguello, L., Luchessi, A. D., & Simabuco, F. M. (2015). The S6K protein family in health and disease. Life Sciences, 131, 1–10. https://doi.org/10.1016/j.lfs.2015.03.001
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Weiss, M. S., Brandl, M., Sühnel, J., Pal, D., & Hilgenfeld, R. (2001). More hydrogen bonds for the (structural) biologist. Trends in Biochemical Sciences, 26(9), 521–523. https://doi.org/10.1016/s0968-0004(01)01935-1
  • Wu, Y., Tepper, H. L., & Voth, G. A. (2006). Flexible simple point-charge water model with improved liquid-state properties. The Journal of Chemical Physics, 124(2), 024503. https://doi.org/10.1063/1.2136877
  • Zaytseva, Y. Y., Valentino, J. D., Gulhati, P., & Evers, B. M. (2012). mTOR inhibitors in cancer therapy. Cancer Letters, 319(1), 1–7. https://doi.org/10.1016/j.canlet.2012.01.005
  • Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: From growth signal integration to cancer, diabetes and ageing. Nature Reviews. Molecular Cell Biology, 12(1), 21–35. https://doi.org/10.1038/nrm3025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.