120
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Insights into the dynamic interactions of RNase a and osmolytes through computational approaches

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5903-5911 | Received 24 Apr 2023, Accepted 20 Jun 2023, Published online: 26 Jun 2023

References

  • Achudhan, A. B., Kannan, P., & Saleena, L. M. (2023). Functional metagenomics uncovers nitrile-hydrolysing enzymes in a coal metagenome. Frontiers in Molecular Biosciences, 10, 1123902. https://doi.org/10.3389/fmolb.2023.1123902
  • Bashir, S., Shamsi, A., Ahmad, F., Hassan, M. I., Kamal, M. A., & Islam, A. (2020). Biophysical elucidation of fibrillation inhibition by sugar osmolytes in α-lactalbumin: Multispectroscopic and molecular docking approaches. ACS Omega, 5(41), 26871–26882. https://doi.org/10.1021/acsomega.0c04062
  • Borkotoky, S., & Murali, A. (2017a). A computational assessment of pH-dependent differential interaction of T7 lysozyme with T7 RNA polymerase. BMC Structural Biology, 17(1), 7. https://doi.org/10.1186/s12900-017-0077-9
  • Burg, M. B., & Ferraris, J. D. (2008). Intracellular organic osmolytes: Function and regulation. The Journal of Biological Chemistry, 283(12), 7309–7313. https://doi.org/10.1074/jbc.R700042200
  • Chatani, E., & Hayashi, R. (2001). Functional and structural roles of constituent amino acid residues of bovine pancreatic ribonuclease A. Journal of Bioscience and Bioengineering, 92(2), 98–107. https://doi.org/10.1263/jbb.92.98
  • Chatani, E., Hayashi, R., Moriyama, H., & Ueki, T. (2002). Conformational strictness required for maximum activity and stability of bovine pancreatic ribonuclease A as revealed by crystallographic study of three Phe120 mutants at 1.4 A resolution. Protein Science: A Publication of the Protein Society, 11(1), 72–81. https://doi.org/10.1110/ps.31102
  • Gunasekaran, P., Velmurugan, Y., Arputharaj, D. S., Savaridasson, J. K., Hemamalini, M., & Venkatachalam, R. (2023). In vitro contraceptive activities, molecular docking, molecular dynamics, MM-PBSA, non-covalent interaction and DFT studies of bioactive compounds from Aegle marmelos. Linn., leaves. Frontiers in Chemistry, 11, 1096177. https://doi.org/10.3389/fchem.2023.1096177
  • Hossain, M. A., Rahman, M. H., Sultana, H., Ahsan, A., Rayhan, S. I., Hasan, M. I., Sohel, M., Somadder, P. D., & Moni, M. A. (2023). An integrated in-silico pharmaco-bioinformatics approaches to identify synergistic effects of COVID-19 to HIV patients. Computers in Biology and Medicine, 155, 106656. https://doi.org/10.1016/j.compbiomed.2023.106656
  • Idoko, V. O., Sulaiman, M. A., Adamu, R. M., Abdullahi, A. D., Tajuddeen, N., Mohammed, A., Inuwa, H. M., & Ibrahim, M. A. (2023). Evaluating Khaya senegalensis for dipeptidyl peptidase-IV inhibition using in vitro analysis and molecular dynamic simulation of identified bioactive compounds. Chemistry & Biodiversity, 20(2), e202200909. https://doi.org/10.1002/cbdv.202200909
  • Jafari, A., Shareghi, B., Hosseini-Koupaei, M., & Farhadian, S. (2020a). Characterization of osmolyte-enzyme interactions using different spectroscopy and molecular dynamic techniques: Binding of sucrose to proteinase K. International Journal of Biological Macromolecules, 151, 1250–1258. https://doi.org/10.1016/j.ijbiomac.2019.10.171
  • Khan, S., Siraj, S., Shahid, M., Haque, M. M., & Islam, A. (2023). Osmolytes: Wonder molecules to combat protein misfolding against stress conditions. International Journal of Biological Macromolecules, 234, 123662. https://doi.org/10.1016/j.ijbiomac.2023.123662
  • Khan, S. H., Ahmad, N., Ahmad, F., & Kumar, R. (2010). Naturally occurring organic osmolytes: From cell physiology to disease prevention. International Union of Biochemistry and Molecular Biology Life, 62(12), 891–895. https://doi.org/10.1002/iub.406
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Kumar, R. (2009). Role of naturally occurring osmolytes in protein folding and stability. Archives of Biochemistry and Biophysics, 491(1-2), 1–6. https://doi.org/10.1016/j.abb.2009.09.007
  • Kumari, R., Kumar, R., Open Source Drug Discovery, C., & Lynn, A, (2014). g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Maisuradze, G. G., & Leitner, D. M. (2007). Free energy landscape of a biomolecule in dihedral principal component space: Sampling convergence and correspondence between structures and minima. Proteins, 67(3), 569–578. https://doi.org/10.1002/prot.21344
  • Md Nayeem, S., Sohail, E. M., Srihari, N. V., Indira, P., & Srinivasa Reddy, M. (2022). Target SARS-CoV-2: Theoretical exploration on clinical suitability of certain drugs. Journal of Biomolecular Structure & Dynamics, 40(19), 8905–8912. https://doi.org/10.1080/07391102.2021.1924262
  • Menon, S., & Sengupta, N. (2015). Perturbations in inter-domain associations may trigger the onset of pathogenic transformations in PrP(C): Insights from atomistic simulations. Molecular Biosystems, 11(5), 1443–1453. https://doi.org/10.1039/c4mb00689e
  • Messmore, J. M., Fuchs, D. N., & Raines, R. T. (1995). Ribonuclease a: Revealing structure-function relationships with semisynthesis. Journal of the American Chemical Society, 117(31), 8057–8060. https://doi.org/10.1021/ja00136a001
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nogues, M. V., Vilanova, M., & Cuchillo, C. M. (1995). Bovine pancreatic ribonuclease A as a model of an enzyme with multiple substrate binding sites. Biochimica et Biophysica Acta, 1253(1), 16–24. https://doi.org/10.1016/0167-4838(95)00138-k
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Prakash, A., Borkotoky, S., & Dubey, V. K. (2023). Targeting two potential sites of SARS-CoV-2 main protease through computational drug repurposing. Journal of Biomolecular Structure & Dynamics, 41(7), 3014–3024. https://doi.org/10.1080/07391102.2022.2044907
  • Raines, R. T. (1998). Ribonuclease A. Chemical Reviews, 98(3), 1045–1066. https://doi.org/10.1021/cr960427h
  • Rajkumari, J., Borkotoky, S., Reddy, D., Mohanty, S. K., Kumavath, R., Murali, A., Suchiang, K., & Busi, S. (2019). Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas aeruginosa PAO1: Insights from in vitro, in vivo and in silico studies. Microbiological Research, 226, 19–26. https://doi.org/10.1016/j.micres.2019.05.001
  • Ratnaparkhi, G. S., & Varadarajan, R. (2001). Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states. The Journal of Biological Chemistry, 276(31), 28789–28798. https://doi.org/10.1074/jbc.M101906200
  • Scheraga, H. A., Wedemeyer, W. J., & Welker, E. (2001). Bovine pancreatic ribonuclease A: Oxidative and conformational folding studies. Methods in Enzymology, 341, 189–221. https://doi.org/10.1016/s0076-6879(01)41153-0
  • Schlitter, J. (1993). Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chemical Physics Letters, 215(6), 617–621. https://doi.org/10.1016/0009-2614(93)89366-P
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Topno, N. S., Kannan, M., & Krishna, R. (2016). Interacting mechanism of ID3 HLH domain towards E2A/E12 transcription factor - An insight through molecular dynamics and docking approach. Biochemistry and Biophysics Reports, 5, 180–190. https://doi.org/10.1016/j.bbrep.2015.12.002
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, P. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research. Beaverton, OR: Oregon Graduate Institute of Science and Technology, 2.
  • Verma, S., Grover, S., Tyagi, C., Goyal, S., Jamal, S., Singh, A., & Grover, A. (2016). Hydrophobic interactions are a key to MDM2 inhibition by polyphenols as revealed by molecular dynamics simulations and MM/PBSA free energy calculations. PLOS One, 11(2), e0149014. https://doi.org/10.1371/journal.pone.0149014
  • Waseem, R., Yameen, D., Khan, T., Anwer, A., Kazim, S. N., Haque, M. M., Hassan, M. I., & Islam, A. (2023). Aggregation of irisin and its prevention by trehalose: A biophysical approach. Journal of Molecular Structure, 1281, 135078. https://doi.org/10.1016/j.molstruc.2023.135078
  • Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. The Journal of Experimental Biology, 208(Pt 15), 2819–2830. https://doi.org/10.1242/jeb.01730
  • Younus, H., Ulbrich-Hofmann, R., & Saleemuddin, M. (2006). Inhibition of pancreatic ribonuclease A aggregation by antibodies raised against the native enzyme and its N-terminal dodecapeptide. Protein and Peptide Letters, 13(7), 673–677. https://doi.org/10.2174/092986606777790629

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.