108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Deciphering the mechanism of HM43239 inhibiting the mutant F691L resistant to gilteritinib in FMS-like tyrosine kinase 3

ORCID Icon, , &
Pages 5817-5826 | Received 18 May 2023, Accepted 17 Jun 2023, Published online: 29 Jun 2023

References

  • Abu-Duhier, F. M., Goodeve, A. C., Wilson, G. A., Care, R. S., Peake, I. R., & Reilly, J. T. (2001). Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. British Journal of Haematology, 113(4), 983–988. https://doi.org/10.1046/j.1365-2141.2001.02850.x
  • Bae, I., Choi, J., Song, J., Byun, J.-Y., Lee, E., Song, T., Kim, Y.-Y., Bak, Y., Kim, Y. H., Ahn, Y. G., & Suh, K. H. (2021). Abstract 1257: HM43239, a novel FLT3 inhibitor, has the potential to inhibit mutations resistant to FLT3 inhibitors. Cancer Research, 81(13_Supplement), 1257–1257. https://doi.org/10.1158/1538-7445.AM2021-1257
  • Berenstein, R. (2015). Class III receptor tyrosine kinases in acute leukemia – biological functions and modern laboratory analysis. Biomarker Insights, 10(Suppl 3), 1–14. https://doi.org/10.4137/bmi.S22433
  • Breitenbuecher, F., Schnittger, S., Grundler, R., Markova, B., Carius, B., Brecht, A., Duyster, J., Haferlach, T., Huber, C., & Fischer, T. (2009). Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood, 113(17), 4074–4077. https://doi.org/10.1182/blood-2007-11-125476
  • Butowski, N., Colman, H., De Groot, J. F., Omuro, A. M., Nayak, L., Wen, P. Y., Cloughesy, T. F., Marimuthu, A., Haidar, S., Perry, A., Huse, J., Phillips, J., West, B. L., Nolop, K. B., Hsu, H. H., Ligon, K. L., Molinaro, A. M., & Prados, M. (2016). Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-oncology, 18(4), 557–564. https://doi.org/10.1093/neuonc/nov245
  • Cortes, J. E., Khaled, S., Martinelli, G., Perl, A. E., Ganguly, S., Russell, N., Krämer, A., Dombret, H., Hogge, D., Jonas, B. A., Leung, A. Y.-H., Mehta, P., Montesinos, P., Radsak, M., Sica, S., Arunachalam, M., Holmes, M., Kobayashi, K., Namuyinga, R., … Levis, M. J. (2019). Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): A multicentre, randomised, controlled, open-label, phase 3 trial. The Lancet. Oncology, 20(7), 984–997. https://doi.org/10.1016/s1470-2045(19)30150-0
  • Creutzig, U., van den Heuvel-Eibrink, M. M., Gibson, B., Dworzak, M. N., Adachi, S., de Bont, E., Harbott, J., Hasle, H., Johnston, D., Kinoshita, A., Lehrnbecher, T., Leverger, G., Mejstrikova, E., Meshinchi, S., Pession, A., Raimondi, S. C., Sung, L., Stary, J., Zwaan, C. M., Kaspers, G. J. L., & Reinhardt, D., AML Committee of the International BFM Study Group. (2012). Diagnosis and management of acute myeloid leukemia in children and adolescents: Recommendations from an international expert panel. Blood, 120(16), 3187–3205. https://doi.org/10.1182/blood-2012-03-362608
  • Daver, N., Lee, K. H., Jung, C. W., Soo, Y. S., Arellano, M. L., Jonas, B. A., Yoon, J., Jung, S., Noh, Y. S., Bae, I., & Kim, S. (2020). HM43239, a novel small molecule inhibitor of FLT3, in Acute Myeloid Leukemia (AML) with and without FMS-like tyrosine kinase 3 (FLT3) mutations: Phase 1/2 study. Blood, 136(Supplement 1), 1. https://doi.org/10.1182/blood-2020-143244
  • Daver, N., Lee, K. H., Jung, C. W., Yoon, S.-S., Arellano, M. L., Yoon, J., Lee, N., Kim, H., Lee, J., Jonas, B. A., & Baek, S. (2021). First in Human (FIH) FLT3 and SYK inhibitor HM43239 shows single agent activity in patients (pts) with relapsed or refractory (R/R) FLT3 mutated and wild-type acute myeloid leukemia (AML). Blood, 138(Supplement 1), 702. https://doi.org/10.1182/blood-2021-150014
  • Daver, N. G., Lee, K. H., Yoon, S.-S., Jung, C. W., Kang, H. J., Jung, S., Seo, S., Yoon, J., Kim, H., Noh, Y. S., Seo, Y., Kwon, H., Han, O., Baek, S., Seo, K., & Suh, K. H. (2019). HM43239, a novel potent small molecule FLT3 inhibitor, in Acute Myeloid Leukemia (AML) with FMS-like Tyrosine Kinase 3 (FLT3) mutations: Phase 1/2 study. Blood, 134(Supplement_1), 1331–1331. https://doi.org/10.1182/blood-2019-129670
  • Gilliland, D. G., & Griffin, J. D. (2002). The roles of FLT3 in hematopoiesis and leukemia. Blood, 100(5), 1532–1542. https://doi.org/10.1182/blood-2002-02-0492
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Joshi, S. K., Sharzehi, S., Pittsenbarger, J., Bottomly, D., Tognon, C. E., McWeeney, S. K., Druker, B. J., & Traer, E. (2021). A noncanonical FLT3 gatekeeper mutation disrupts gilteritinib binding and confers resistance. American Journal of Hematology, 96(7), E226–e229. https://doi.org/10.1002/ajh.26174
  • Kawase, T., Nakazawa, T., Eguchi, T., Tsuzuki, H., Ueno, Y., Amano, Y., Suzuki, T., Mori, M., & Yoshida, T. (2019). Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget, 10(58), 6111–6123. https://doi.org/10.18632/oncotarget.27222
  • Kayser, S., Schlenk, R. F., Londono, M. C., Breitenbuecher, F., Wittke, K., Du, J., Groner, S., Späth, D., Krauter, J., Ganser, A., Döhner, H., Fischer, T., & Döhner, K, German-Austrian AML Study Group (AMLSG). (2009). Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood, 114(12), 2386–2392. https://doi.org/10.1182/blood-2009-03-209999
  • Lee, L. Y., Hernandez, D., Rajkhowa, T., Smith, S. C., Raman, J. R., Nguyen, B., Small, D., & Levis, M. (2017). Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood, 129(2), 257–260. https://doi.org/10.1182/blood-2016-10-745133
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Nakao, M., Yokota, S., Iwai, T., Kaneko, H., Horiike, S., Kashima, K., Sonoda, Y., Fujimoto, T., Misawa, S. (1996). Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia, 10(12), 1911–1918.
  • O'Donnell, M. R., Tallman, M. S., Abboud, C. N., Altman, J. K., Appelbaum, F. R., Arber, D. A., Bhatt, V., Bixby, D., Blum, W., Coutre, S. E., De Lima, M., Fathi, A. T., Fiorella, M., Foran, J. M., Gore, S. D., Hall, A. C., Kropf, P., Lancet, J., Maness, L. J., … Ogba, N. (2017). Acute myeloid leukemia, Version 3.2017, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 15(7), 926–957. https://doi.org/10.6004/jnccn.2017.0116
  • Pulte, E. D., Norsworthy, K. J., Wang, Y., Xu, Q., Qosa, H., Gudi, R., Przepiorka, D., Fu, W., Okusanya, O. O., Goldberg, K. B., De Claro, R. A., Farrell, A. T., & Pazdur, R. (2021). FDA approval summary: Gilteritinib for relapsed or refractory acute myeloid leukemia with a FLT3 mutation. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 27(13), 3515–3521. https://doi.org/10.1158/1078-0432.Ccr-20-4271
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Skjærven, L., Yao, X. Q., Scarabelli, G., & Grant, B. J. (2014). Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics, 15(1), 399. https://doi.org/10.1186/s12859-014-0399-6
  • Smith, C. C., Zhang, C., Lin, K. C., Lasater, E. A., Zhang, Y., Massi, E., Damon, L. E., Pendleton, M., Bashir, A., Sebra, R., Perl, A., Kasarskis, A., Shellooe, R., Tsang, G., Carias, H., Powell, B., Burton, E. A., Matusow, B., Zhang, J., … Shah, N. P. (2015). Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 "Gatekeeper" F691L mutation with PLX3397. Cancer Discovery, 5(6), 668–679. https://doi.org/10.1158/2159-8290.Cd-15-0060
  • Sun, M., Zhang, X., Gao, Z., Liu, T., Luo, C., Zhao, Y., Liu, Y., He, Z., Wang, J., & Sun, J. (2019). Probing a dipeptide-based supramolecular assembly as an efficient camptothecin delivering carrier for cancer therapy: Computational simulations and experimental validations. Nanoscale, 11(9), 3864–3876. https://doi.org/10.1039/c8nr07014h
  • Tarver, T. C., Hill, J. E., Rahmat, L., Perl, A. E., Bahceci, E., Mori, K., & Smith, C. C. (2020). Gilteritinib is a clinically active FLT3 inhibitor with broad activity against FLT3 kinase domain mutations. Blood Advances, 4(3), 514–524. https://doi.org/10.1182/bloodadvances.2019000919
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Williams, A. B., Nguyen, B., Li, L., Brown, P., Levis, M., Leahy, D., & Small, D. (2013). Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia, 27(1), 48–55. https://doi.org/10.1038/leu.2012.191
  • Yamamoto, Y., Kiyoi, H., Nakano, Y., Suzuki, R., Kodera, Y., Miyawaki, S., Asou, N., Kuriyama, K., Yagasaki, F., Shimazaki, C., Akiyama, H., Saito, K., Nishimura, M., Motoji, T., Shinagawa, K., Takeshita, A., Saito, H., Ueda, R., Ohno, R., & Naoe, T. (2001). Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood, 97(8), 2434–2439. https://doi.org/10.1182/blood.v97.8.2434
  • Zarrinkar, P. P., Gunawardane, R. N., Cramer, M. D., Gardner, M. F., Brigham, D., Belli, B., Karaman, M. W., Pratz, K. W., Pallares, G., Chao, Q., Sprankle, K. G., Patel, H. K., Levis, M., Armstrong, R. C., James, J., & Bhagwat, S. S. (2009). AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood, 114(14), 2984–2992. https://doi.org/10.1182/blood-2009-05-222034
  • Zavorka Thomas, M. E., Lu, X., Talebi, Z., Jeon, J. Y., Buelow, D. R., Gibson, A. A., Uddin, M. E., Brinton, L. T., Nguyen, J., Collins, M., Lodi, A., Sweeney, S. R., Campbell, M. J., Sweet, D. H., Sparreboom, A., Lapalombella, R., Tiziani, S., & Baker, S. D. (2021). Gilteritinib inhibits glutamine uptake and utilization in FLT3-ITD-positive AML. Molecular Cancer Therapeutics, 20(11), 2207–2217. https://doi.org/10.1158/1535-7163.Mct-21-0071
  • Zorn, J. A., Wang, Q., Fujimura, E., Barros, T., & Kuriyan, J. (2015). Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220). PloS One, 10(4), e0121177. https://doi.org/10.1371/journal.pone.0121177

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.