89
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Building polarization into protein-inhibitor binding dynamics in rational drug design for rheumatoid arthritis

, , &
Pages 5912-5930 | Received 19 Jan 2023, Accepted 20 Jun 2023, Published online: 28 Jun 2023

References

  • Akimov, A. V., & Prezhdo, O. V. (2015). Large-Scale Computations in Chemistry: A bird’s eye view of a vibrant field. Chemical Reviews, 115(12), 5797–5890. https://doi.org/10.1021/cr500524c
  • Aletaha, D., & Smolen, J. S. (2018). Diagnosis and management of rheumatoid arthritis: A review. JAMA, 320(13), 1360–1372. https://doi.org/10.1001/jama.2018.13103
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(Web Server issue), W537–W541. https://doi.org/10.1093/nar/gks375
  • Basit, A., Mishra, R. K., & Bandyopadhyay, P. (2021). Calcium ion binding to calmodulin: Binding free energy calculation using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method by incorporating implicit polarization. Journal of Biomolecular Structure & Dynamics, 39(18), 7213–7222. https://doi.org/10.1080/0739110220201810125
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & Mackerell, A. D. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 Dihedral Angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., … Kollman, P. A. (2010). AMBER 11. San Francisco: University of California. http://ambermd.org/#Amber11
  • Cieplak, P., Cornell, W. D., Bayly, C., & Kollman, P. A. (1995). Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins. Journal of Computational Chemistry, 16(11), 1357–1377. https://doi.org/10.1002/jcc.540161106
  • Cong, Y., Li, M., Feng, G., Li, Y., Wang, X., & Duan, L. (2017). Trypsin-Ligand binding affinities calculated using an effective interaction entropy method under polarized force field. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-17868-z
  • Connolly, M. L. (1983). Analytical molecular surface calculation. Journal of Applied Crystallography, 16(5), 548–558. https://doi.org/10.1107/S0021889883010985
  • Cornell, W. D., Cieplak, P., Bayly, C. I., & Kollman, P. A. (1993). Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. Journal of the American Chemical Society, 115(21), 9620–9631. https://doi.org/10.1021/ja00074a030
  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1996). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 118(9), 2309–2309. https://doi.org/10.1021/ja955032e
  • Cusack, K., Allen, H., Bischoff, A., Clabbers, A., Dixon, R., Fix-Stenzel, S., Friedman, M., Gaumont, Y., George, D., Gordon, T., Grongsaard, P., Janssen, B., Jia, Y., Moskey, M., Quinn, C., Salmeron, A., Thomas, C., Wallace, G., Wishart, N., & Yu, Z. (2009). Identification of a selective thieno[2,3-c]pyridine inhibitor of COT kinase and TNF-α production. Bioorganic & Medicinal Chemistry Letters, 19(6), 1722–1725. https://doi.org/10.1016/j.bmcl.2009.01.088
  • Dassault Systèmes BIOVIA. (2020). Discovery studio modeling environment, Release 2020.  San Diego, CA, USA: Dassault Systèmes. https://3ds.com/products-services/biovia
  • De Vivo, M., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry, 59(9), 4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684
  • Dror, O., Benyamini, H., Nussinov, R., & Wolfson, H. J. (2003). Multiple structural alignment by secondary structures: Algorithm and applications. Protein Science: A Publication of the Protein Society, 12(11), 2492–2507. https://doi.org/10.1110/ps.03200603
  • Duan, L. L., Feng, G. Q., & Zhang, Q. G. (2016). Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy. Scientific Reports, 6(1), 1–11. https://doi.org/10.1038/srep31488
  • Duan, L. L., Gao, Y., Ji, C. G., Mei, Y., Zhang, Q. G., Tang, B., & Zhang, J. Z. H. (2014). Energetics of protein backbone hydrogen bonds and their local electrostatic environment. Science China Chemistry, 57(12), 1708–1715. https://doi.org/10.1007/s11426-014-5246-0
  • Duan, L. L., Mei, Y., Zhang, D., Zhang, Q. G., & Zhang, J. Z. H. (2010). Folding of a helix at room temperature is critically aided by electrostatic polarization of intraprotein hydrogen bonds. Journal of the American Chemical Society, 132(32), 11159–11164. https://doi.org/10.1021/ja102735g
  • Duan, L. L., Zhu, T., Li, Y. C., Zhang, Q. G., & Zhang, J. Z. H. (2017). Effect of polarization on HIV-1protease and fluoro-substituted inhibitors binding energies by large scale molecular dynamics simulations. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/srep42223
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. https://doi.org/10.1002/jcc.10349
  • Fernández, A., & Stephen Berry, R. (2002). Extent of hydrogen-bond protection in folded proteins: A constraint on packing architectures. Biophysical Journal, 83(5), 2475–2481. https://doi.org/10.1016/S0006-3495(02)75258-2
  • Foloppe, N., & Hubbard, R. (2006). Towards predictive ligand design with free-energy based computational methods? Current Medicinal Chemistry, 13(29), 3583–3608. https://doi.org/10.2174/092986706779026165
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. J., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2009). Gaussian 09 Revision A.02. Wallingford, CT: Gaussian, Inc. https://gaussian.com
  • Gavrin, L. K., Green, N., Hu, Y., Janz, K., Kaila, N., Li, H.-Q., Tam, S. Y., Thomason, J. R., Gopalsamy, A., Ciszewski, G., Cuozzo, J. W., Hall, J. P., Hsu, S., Telliez, J.-B., & Lin, L.-L. (2005). Inhibition of Tpl2 kinase and TNF-α production with 1,7-naphthyridine-3-carbonitriles: Synthesis and structure–activity relationships. Bioorganic & Medicinal Chemistry Letters, 15(23), 5288–5292. https://doi.org/10.1016/j.bmcl.2005.08.029
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/1746044120151032936
  • George, D., Friedman, M., Allen, H., Argiriadi, M., Barberis, C., Bischoff, A., Clabbers, A., Cusack, K., Dixon, R., Fix-Stenzel, S., Gordon, T., Janssen, B., Jia, Y., Moskey, M., Quinn, C., Salmeron, J.-A., Wishart, N., Woller, K., & Yu, Z. (2008). Discovery of thieno[2,3-c]pyridines as potent COT inhibitors. Bioorganic & Medicinal Chemistry Letters, 18(18), 4952–4955. https://doi.org/10.1016/j.bmcl.2008.08.037
  • Glatthar, R., Stojanovic, A., Troxler, T., Mattes, H., Möbitz, H., Beerli, R., Blanz, J., Gassmann, E., Drückes, P., Fendrich, G., Gutmann, S., Martiny-Baron, G., Spence, F., Hornfeld, J., Peel, J. E., & Sparrer, H. (2016). Discovery of imidazoquinolines as a novel class of potent, selective, and in vivo efficacious Cancer Osaka thyroid (COT) kinase inhibitors. Journal of Medicinal Chemistry, 59(16), 7544–7560. https://doi.org/10.1021/acs.jmedchem.6b00598
  • Gohlke, H., Hendlich, M., & Klebe, G. (2000). Knowledge-based scoring function to predict protein-ligand interactions. Journal of Molecular Biology, 295(2), 337–356. https://doi.org/10.1006/jmbi.1999.3371
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. Journal of Molecular Biology, 330(4), 891–913. https://doi.org/10.1016/s0022-2836(03)00610-7
  • Green, N., Hu, Y., Janz, K., Li, H.-Q., Kaila, N., Guler, S., Thomason, J., Joseph-McCarthy, D., Tam, S. Y., Hotchandani, R., Wu, J., Huang, A., Wang, Q., Leung, L., Pelker, J., Marusic, S., Hsu, S., Telliez, J.-B., Hall, J. P., Cuozzo, J. W., & Lin, L.-L. (2007). Inhibitors of tumor progression loci-2 (Tpl2) kinase and tumor necrosis factor α (TNF-α) production: Selectivity and in vivo antiinflammatory activity of novel 8-substituted-4-anilino-6-aminoquinoline-3- carbonitriles. Journal of Medicinal Chemistry, 50(19), 4728–4745. https://doi.org/10.1021/jm070436q
  • Gunsteren, W. F. v., Billeter, S. R., Eising, A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. P., & Tironi, I. G. (1996). Biomolecular simulation : The GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zurich, Zurich, Switzerland, 1–1042.
  • Hall, J. P., Kurdi, Y., Hsu, S., Cuozzo, J., Liu, J., Telliez, J.-B., Seidl, K. J., Winkler, A., Hu, Y., Green, N., Askew, G. R., Tam, S., Clark, J. D., & Lin, L.-L. (2007). Pharmacologic inhibition of Tpl2 blocks inflammatory responses in primary human monocytes, synoviocytes, and blood *. The Journal of Biological Chemistry, 282(46), 33295–33304. https://doi.org/10.1074/jbc.M703694200
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Molecular Informatics, 31(2), 114–122. https://doi.org/10.1002/minf.201100135
  • Honig, B., & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science (New York, NY), 268(5214), 1144–1149. https://doi.org/10.1126/science.7761829
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpi, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8, 37–47.
  • Hu, Y., Cole, D., Denny, R. A., Anderson, D. R., Ipek, M., Ni, Y., Wang, X., Thaisrivongs, S., Chamberlain, T., Hall, J. P., Liu, J., Luong, M., Lin, L.-L., Telliez, J.-B., & Gopalsamy, A. (2011). Discovery of indazoles as inhibitors of Tpl2 kinase. Bioorganic & Medicinal Chemistry Letters, 21(16), 4758–4761. https://doi.org/10.1016/j.bmcl.2011.06.065
  • Hu, Y., Green, N., Gavrin, L. K., Janz, K., Kaila, N., Li, H.-Q., Thomason, J. R., Cuozzo, J. W., Hall, J. P., Hsu, S., Nickerson-Nutter, C., Telliez, J.-B., Lin, L.-L., & Tam, S. (2006). Inhibition of Tpl2 kinase and TNFα production with quinoline-3-carbonitriles for the treatment of rheumatoid arthritis. Bioorganic & Medicinal Chemical Letters, 16(23), 6067–6072. https://doi.org/10.1016/j.bmcl.2006.08.102
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. https://doi.org/10.1021/ci3001277
  • Ji, C., & Mei, Y. (2014). Some practical approaches to treating electrostatic polarization of proteins. Accounts of Chemical Research, 47(9), 2795–2803. https://doi.org/10.1021/ar500094n
  • Ji, C., Mei, Y., & Zhang, J. Z. H. (2008). Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pKa shifts for Asp26/Asp20 in Thioredoxin. Biophysical Journal, 95(3), 1080–1088. https://doi.org/10.1529/biophysj.108.131110
  • Jia, X., Mei, Y., Zhang, J. Z., & Mo, Y. (2015). Hybrid QM/MM study of FMO complex with polarized protein-specific charge. Scientific Reports, 5(1), 1–10. https://doi.org/10.1038/srep17096
  • Jorgensen, W. L. (2007). Special issue on polarization. Journal of Chemical Theory and Computation, 3(6), 1877. https://doi.org/10.1021/ct700252g
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • King, E., Aitchison, E., Li, H., & Luo, R. (2021). Recent developments in free energy calculations for drug discovery. Frontiers in Molecular Biosciences, 8, 775. https://doi.org/10.3389/fmolb.2021.712085
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Lee, W.-J., Lan, K.-H., Chou, C.-T., Yi, Y.-C., Chen, W.-C., Pan, H.-C., Peng, Y.-C., Wang, K.-B., Chen, Y.-C., Chao, T.-H., Tien, H.-R., Sheu, W. H. H., & Sheu, M.-L. (2013). Tpl2 inhibitors thwart endothelial cell function in angiogenesis and peritoneal dissemination. Neoplasia (New York, NY), 15(9), 1036–1048. https://doi.org/10.1593/neo.121914
  • Lemkul, J. A., Huang, J., Roux, B., & MacKerell, A. D. (2016). An empirical polarizable force field based on the classical drude oscillator model: Development history and recent applications. Chemical Reviews, 116(9), 4983–5013. https://doi.org/10.1021/acs.chemrev.5b00505
  • Leontyev, I., & Stuchebrukhov, A. (2011). Accounting for electronic polarization in non-polarizable force fields. Physical Chemistry Chemical Physics: PCCP, 13(7), 2613–2626. https://doi.org/10.1039/c0cp01971b
  • Li, L., Li, C., Sarkar, S., Zhang, J., Witham, S., Zhang, Z., Wang, L., Smith, N., Petukh, M., & Alexov, E. (2012). DelPhi: A comprehensive suite for DelPhi software and associated resources. BMC Biophysics, 5(1), 1–11. https://doi.org/10.1186/2046-1682-5-9
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Loco, D., Polack, É., Caprasecca, S., Lagardère, L., Lipparini, F., Piquemal, J.-P., & Mennucci, B. (2016). A QM/MM approach using the AMOEBA polarizable embedding: From ground state energies to electronic excitations. Journal of Chemical Theory and Computation, 12(8), 3654–3661. https://doi.org/10.1021/acs.jctc.6b00385
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry. B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Marshall, G. R. (2013). Limiting assumptions in molecular modeling: Electrostatics. Journal of Computer-Aided Molecular Design, 27(2), 107–114. https://doi.org/10.1007/s10822-013-9634-x
  • MarvinSketch was used for drawing chemical structures. (2016). MarvinSketch version 16.1.18. ChemAxon. http://www.chemaxon.com/marvin
  • Mason, P. E., Jungwirth, P., & Duboué-Dijon, E. (2019). Quantifying the strength of a salt bridge by neutron scattering and molecular dynamics. The Journal of Physical Chemistry Letters, 10(12), 3254–3259. https://doi.org/10.1021/acs.jpclett.9b01309
  • McCammon, J. A., Gelin, B. R., & Karplus, M. (1977). Dynamics of folded proteins. Nature, 267(5612), 585–590. https://doi.org/10.1038/267585a0
  • McGovern, D. P. B., Kugathasan, S., & Cho, J. H. (2015). Genetics of inflammatory bowel diseases. Gastroenterology, 149(5), 1163–1176.e2. https://doi.org/10.1053/j.gastro.2015.08.001
  • McInnes, I. B., & Schett, G. (2017). Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet (London, England), 389(10086), 2328–2337. https://doi.org/10.1016/S0140-6736(17)31472-1
  • Mei, Y., Zhang, D. W., & Zhang, J. Z. H. (2005). New method for direct linear-scaling calculation of electron density of proteins. The Journal of Physical Chemistry. A, 109(1), 2–5. https://doi.org/10.1021/jp045109y
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Paardekooper, L. M., Bendix, M. B., Ottria, A., Haer, L. W. d., Beest, M. T., Radstake, T. R. D. J., Marut, W., & Bogaart, G. v. d. (2018). Hypoxia potentiates monocyte-derived dendritic cells for release of tumor necrosis factor α via MAP3K8. Bioscience Reports, 38, BSR20182019.
  • Pattison, M. J., Mitchell, O., Flynn, H. R., Chen, C.-S., Yang, H.-T., Ben-Addi, H., Boeing, S., Snijders, A. P., & Ley, S. C. (2016). TLR and TNF-R1 activation of the MKK3/MKK6–p38α axis in macrophages is mediated by TPL-2 kinase. The Biochemical Journal, 473(18), 2845–2861. https://doi.org/10.1042/BCJ20160502
  • Perutz, M. F. (1978). Electrostatic effects in proteins. Science (New York, NY), 201(4362), 1187–1191. https://doi.org/10.1126/science.694508
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038
  • Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved peptide and protein torsional energetics with the OPLS-AA force field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356
  • Rocchia, W., Alexov, E., & Honig, B. (2001). Extending the applicability of the nonlinear Poisson − Boltzmann equation: Multiple dielectric constants and multivalent ions†. The Journal of Physical Chemistry B, 105(28), 6507–6514. https://doi.org/10.1021/jp010454y
  • Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., & Honig, B. (2002). Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. Journal of Computational Chemistry, 23(1), 128–137. https://doi.org/10.1002/jcc.1161
  • Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Sandhu, G., & Thelma, B. K. (2022). New druggable targets for rheumatoid arthritis based on insights from synovial biology. Frontiers in Immunology, 13, 591. https://doi.org/10.3389/fimmu.2022.834247
  • Senger, K., Pham, V. C., Varfolomeev, E., Hackney, J. A., Corzo, C. A., Collier, J., Lau, V. W. C., Huang, Z., Hamidzhadeh, K., Caplazi, P., Peng, I., Setiadi, A. F., Francis, R., Paler-Martinez, A., Kwon, Y. C., Ramirez-Carrozzi, V., Sun, Y., Grigg, P. W., Roose-Girma, M., … Zarrin, A. A. (2017). The kinase TPL2 activates ERK and p38 signaling to promote neutrophilic inflammation. Science Signaling, 10(475), eaah4273. https://doi.org/10.1126/scisignal.aah4273
  • Simonson, T. (2003). Electrostatics and dynamics of proteins. Reports on Progress in Physics, 66(5), 737–787. https://doi.org/10.1088/0034-4885/66/5/202
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15 - ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Tong, Y., Mei, Y., Li, Y. L., Ji, C. G., & Zhang, J. Z. H. (2010). Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding. Journal of the American Chemical Society, 132(14), 5137–5142. https://doi.org/10.1021/ja909575j
  • Vorobyov, I. V., Anisimov, V. M., & MacKerell, A. D. (2005). Polarizable empirical force field for alkanes based on the classical Drude oscillator model. The Journal of Physical Chemistry. B, 109(40), 18988–18999. https://doi.org/10.1021/jp053182y
  • Wang, J., Cieplak, P., Li, J., Wang, J., Cai, Q., Hsieh, M., Lei, H., Luo, R., & Duan, Y. (2011). Development of polarizable models for molecular mechanical calculations II: Induced dipole models significantly improve accuracy of intermolecular interaction energies. The Journal of Physical Chemistry. B, 115(12), 3100–3111. https://doi.org/10.1021/jp1121382
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, X., Liu, J., Zhang, J. Z. H., & He, X. (2013). Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy. The Journal of Physical Chemistry. A, 117(32), 7149–7161. https://doi.org/10.1021/jp400779t
  • Warshel, A., Sharma, P. K., Kato, M., & Parson, W. W. (2006). Modeling electrostatic effects in proteins. Biochimica et Biophysica Acta, 1764(11), 1647–1676. https://doi.org/10.1016/j.bbapap.2006.08.007
  • Xiao, W., Wang, D., Shen, Z., Li, S., & Li, H. (2018). Multi-body interactions in molecular docking program devised with key water molecules in protein binding sites. Molecules, 23(9), 2321. https://doi.org/10.3390/molecules23092321
  • Xu, D., Matsumoto, M. L., McKenzie, B. S., & Zarrin, A. A. (2018). TPL2 kinase action and control of inflammation. Pharmacological Research, 129, 188–193. https://doi.org/10.1016/j.phrs.2017.11.031
  • Zarrin, A. A., Bao, K., Lupardus, P., & Vucic, D. (2021). Kinase inhibition in autoimmunity and inflammation. Nature Reviews. Drug Discovery, 20(1), 39–63. https://doi.org/10.1038/s41573-020-0082-8
  • Zhang, D. W., & Zhang, J. Z. H. (2003). Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein–molecule interaction energy. Journal of Chemical Physics, 119(7), 3599–3605. https://doi.org/10.1063/1.1591727
  • Zhang, D. W., Xiang, Y., & Zhang, J. Z. H. (2003). New advance in computational chemistry: Full quantum mechanical ab initio computation of streptavidin - Biotin interaction energy. The Journal of Physical Chemistry. B, 107(44), 12039–12041. https://doi.org/10.1021/jp0359081
  • Zhu, Y. L., Beroza, P., & Artis, D. R. (2014). Including explicit water molecules as part of the protein structure in MM/PBSA calculations. Journal of Chemical Information and Modeling, 54(2), 462–469. https://doi.org/10.1021/ci4001794

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.