192
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

An insight into structure-activity relationship of naturally derived biological macromolecules for the treatment of Alzheimer’s disease: a review

, &
Pages 6455-6471 | Received 14 Mar 2023, Accepted 21 Jun 2023, Published online: 28 Jun 2023

References

  • 2020 Alzheimer’s disease facts and figures. (2020). Alzheimer’s and dementia, 16(3), 391–460. https://doi.org/10.1002/alz.12068
  • Aducanumab Approved for Treatment of Alzheimer’s Disease. (2023). https://www.alz.org/alzheimers-dementia/treatments/aducanumab
  • Agrahari, V., Agrahari, V., & Mitra, A. K. (2016). Nanocarrier fabrication and macromolecule drug delivery: Challenges and opportunities. Therapeutic Delivery, 7(4), 257–278. https://doi.org/10.4155/tde-2015-0012
  • Aimi, T., Suzuki, K., Hoshino, T., & Mizushima, T. (2015). Dextran sulfate sodium inhibits amyloid-β oligomer binding to cellular prion protein. Journal of Neurochemistry, 134(4), 611–617. https://doi.org/10.1111/jnc.13166
  • Amadoro, G., Latina, V., Corsetti, V., & Calissano, P. (2020). N-terminal tau truncation in the pathogenesis of Alzheimer’s disease (AD): Developing a novel diagnostic and therapeutic approach. Biochimica et biophysica acta. Molecular Basis of Disease, 1866(3), 165584. https://doi.org/10.1016/j.bbadis.2019.165584
  • Amra, K., Momin, M., Desai, N., & Khan, F. (2022). Therapeutic benefits of natural oils along with permeation enhancing activity. International Journal of Dermatology, 61(4), 484–507. https://doi.org/10.1111/ijd.15733
  • Anu, K. R., Das, S., Joseph, A., Shenoy, G. G., Alex, A. T., & Mudgal, J. (2021). Neurodegenerative pathways in Alzheimer’s disease: A review. Current Neuropharmacology, 19(5), 679–692. https://doi.org/10.2174/1570159X18666200807130637
  • Arndt, J. W., Qian, F., Smith, B. A., Quan, C., Kilambi, K. P., Bush, M. W., Walz, T., Pepinsky, R. B., Bussière, T., Hamann, S., Cameron, T. O., & Weinreb, P. H. (2018). Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Scientific Reports, 8(1), 6412. https://doi.org/10.1038/s41598-018-24501-0
  • Alzheimer’s Association. (2021). What causes Alzheimer’s disease? Alzheimer’s Association.
  • Baker, J. D., Uhrich, R. L., Strovas, T. J., Saxton, A. D., & Kraemer, B. C. (2020). Targeting pathological Tau by small molecule inhibition of the poly(A):MSUT2 RNA–protein interaction. ACS Chemical Neuroscience, 11(15), 2277–2285. https://doi.org/10.1021/acschemneuro.0c00214
  • Bateman, R. J., Cummings, J., Schobel, S., Salloway, S., Vellas, B., Boada, M., Black, S. E., Blennow, K., Fontoura, P., Klein, G., Assunção, S. S., Smith, J., & Doody, R. S. (2022). Gantenerumab: An anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimer’s disease. Alzheimer’s Research & Therapy, 14(1), 178. https://doi.org/10.1186/s13195-022-01110-8
  • Behl, T., Kaur, D., Sehgal, A., Singh, S., Makeen, H. A., Albratty, M., Abdellatif, A. A. H., Dachani, S. R., & Bungau, S. (2022). Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer’s disease. Biomedicine & Pharmacotherapy = Biomedecine & pharmacotherapie, 148, 112773. https://doi.org/10.1016/j.biopha.2022.112773
  • Bolisetty, S., Boddupalli, C. S., Handschin, S., Chaitanya, K., Adamcik, J., Saito, Y., Manz, M. G., & Mezzenga, R. (2014). Amyloid fibrils enhance transport of metal nanoparticles in living cells and induced cytotoxicity. Biomacromolecules, 15(7), 2793–2799. https://doi.org/10.1021/bm500647n
  • Bondi, M. W., Edmonds, E. C., & Salmon, D. P. (2017). Alzheimer’s disease: Past, present, and future. Journal of the International Neuropsychological Society : JINS, 23(9–10), 818–831. https://doi.org/10.1017/S135561771700100X
  • Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789
  • Butterfield, D. A., & Halliwell, B. (2019). Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nature Reviews. Neuroscience, 20(3), 148–160. https://doi.org/10.1038/s41583-019-0132-6
  • Kokate, C. K. (2017). Pharmacognosy. Nirali Prakashan.
  • Callens, M., Kraskovskaya, N., Derevtsova, K., Annaert, W., Bultynck, G., Bezprozvanny, I., & Vervliet, T. (2021). The role of Bcl-2 proteins in modulating neuronal Ca2+ signaling in health and in Alzheimer’s disease. Biochimica et biophysica acta. Molecular Cell Research, 1868(6), 118997. https://doi.org/10.1016/j.bbamcr.2021.118997
  • Chadha, S., Behl, T., Sehgal, A., Kumar, A., & Bungau, S. (2021). Exploring the role of mitochondrial proteins as molecular target in Alzheimer’s disease. Mitochondrion, 56, 62–72. https://doi.org/10.1016/j.mito.2020.11.008
  • Chaudhary, B., Agarwal, S., & Bist, R. (2018). Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains. Frontiers in Biology, 13(1), 56–62. https://doi.org/10.1007/s11515-018-1479-1
  • Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014
  • Cheignon, C., Jones, M., Atrián-Blasco, E., Kieffer, I., Faller, P., Collin, F., & Hureau, C. (2017). Identification of key structural features of the elusive Cu–Aβ complex that generates ROS in Alzheimer’s disease. Chemical Science, 8(7), 5107–5118. https://doi.org/10.1039/C7SC00809K
  • Chen, C., Gu, J., Basurto-Islas, G., Jin, N., Wu, F., Gong, C.-X., Iqbal, K., & Liu, F. (2017). Up-regulation of casein kinase 1ε is involved in tau pathogenesis in Alzheimer’s disease. Scientific Reports, 7(1), 13478. https://doi.org/10.1038/s41598-017-13791-5
  • Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28
  • Chen, X.-Q., & Mobley, W. C. (2019). Alzheimer disease pathogenesis: Insights from molecular and cellular biology studies of oligomeric Aβ and Tau species. Frontiers in Neuroscience, 13, 659. https://doi.org/10.3389/fnins.2019.00659
  • Chew, H., Solomon, V. A., & Fonteh, A. N. (2020). Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Frontiers in Physiology, 11, 598. https://doi.org/10.3389/fphys.2020.00598
  • Choi, M. L., & Gandhi, S. (2018). Crucial role of protein oligomerization in the pathogenesis of Alzheimer’s and Parkinson’s diseases. The FEBS Journal, 285(19), 3631–3644. https://doi.org/10.1111/febs.14587
  • Czapski, G. A., Czubowicz, K., Strosznajder, J. B., & Strosznajder, R. P. (2016). The lipoxygenases: Their regulation and implication in Alzheimer’s disease. Neurochemical Research, 41(1–2), 243–257. https://doi.org/10.1007/s11064-015-1776-x
  • Daiello, L. A., Gongvatana, A., Dunsiger, S., Cohen, R. A., & Ott, B. R. (2015). Association of fish oil supplement use with preservation of brain volume and cognitive function. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 11(2), 226–235. https://doi.org/10.1016/j.jalz.2014.02.005
  • Das, S., Akbar, S., Ahmed, B., Dewangan, R. P., Iqubal, A., Pottoo, F. H., & Joseph, A. (2021). Structural activity relationship-based medicinal perspectives of pyrimidine derivatives as anti-Alzheimer’s agent: A comprehensive review. CNS & Neurological Disorders - Drug Targets, 21(10), 926–939. https://doi.org/10.2174/1871527320666210804161400
  • Das, S., Akbar, S., Ahmed, B., Dewangan, R. P., Iqubal, M. K., Iqubal, A., Chawla, P., Pottoo, F. H., & Joseph, A. (2022). Recent advancement of pyrazole scaffold based neuroprotective agents: A review. CNS & Neurological Disorders - Drug Targets, 21(10), 940–951. https://doi.org/10.2174/1871527320666210602152308
  • Das, S., Ramachandran, A. K., Halder, D., Akbar, S., Ahmed, B., & Joseph, A. (2022). Mechanistic and etiological similarities in diabetes mellitus and Alzheimer’s disease: Antidiabetic drugs as optimistic therapeutics in Alzheimer’s disease. CNS & Neurological Disorders - Drug Targets, 22(7), 973–993. https://doi.org/10.2174/1871527321666220629162229
  • Das, S., Ramachandran, A. K., Birangal, S. R., Akbar, S., Ahmed, B., & Joseph, A. (2021). The controversial therapeutic journey of chloroquine and hydroxychloroquine in the battle against SARS-CoV-2: A comprehensive review. Medicine in Drug Discovery, 10, 100085. https://doi.org/10.1016/j.medidd.2021.100085
  • Das, U., Wang, L., Ganguly, A., Saikia, J. M., Wagner, S. L., Koo, E. H., & Roy, S. (2016). Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway. Nature Neuroscience, 19(1), 55–64. https://doi.org/10.1038/nn.4188
  • Date, E. (2020, September 1–6). Alzheimer’s disease health system readiness – the time to act is now. https://doi.org/10.1177/147323000403200207.4
  • Dehelean, L., Sarbu, M., Petrut, A., & Zamfir, A. D. (2019). Trends in glycolipid biomarker discovery in neurodegenerative disorders by mass spectrometry. Advances in Experimental Medicine and Biology, 1140, 703–729. https://doi.org/10.1007/978-3-030-15950-4_42
  • Duits, F. H., Hernandez-Guillamon, M., Montaner, J., Goos, J. D. C., Montañola, A., Wattjes, M. P., Barkhof, F., Scheltens, P., Teunissen, C. E., & van der Flier, W. M. (2015). Matrix metalloproteinases in Alzheimer’s disease and concurrent cerebral microbleeds. Journal of Alzheimer’s Disease : JAD, 48(3), 711–720. https://doi.org/10.3233/JAD-143186
  • Elmorsy, E., Elsharkawy, E., Alhumaydhi, F. A., & Salama, M. (2021). The protective effect of Indian Catechu methanolic extract against aluminum chloride-induced neurotoxicity, a rodent model of Alzheimer’s disease. Heliyon, 7(2), e06269. https://doi.org/10.1016/j.heliyon.2021.e06269
  • Fan, L., Mao, C., Hu, X., Zhang, S., Yang, Z., Hu, Z., Sun, H., Fan, Y., Dong, Y., Yang, J., Shi, C., & Xu, Y. (2019). New insights into the pathogenesis of Alzheimer’s disease. Frontiers in Neurology, 10, 1312. https://doi.org/10.3389/fneur.2019.01312
  • Ganeshpurkar, A., Swetha, R., Kumar, D., Gangaram, G. P., Singh, R., Gutti, G., Jana, S., Kumar, D., Kumar, A., & Singh, S. K. (2019). Protein-protein interactions and aggregation inhibitors in Alzheimer’s disease. Current Topics in Medicinal Chemistry, 19(7), 501–533. https://doi.org/10.2174/1568026619666190304153353
  • Gouveia, F., Camins, A., Ettcheto, M., Bicker, J., Falcão, A., Cruz, M. T., & Fortuna, A. (2022). Targeting brain renin-angiotensin system for the prevention and treatment of Alzheimer’s disease: Past, present and future. Ageing Research Reviews, 77, 101612. https://doi.org/10.1016/j.arr.2022.101612
  • Grimm, M. O. W., Mett, J., Stahlmann, C. P., Haupenthal, V. J., Zimmer, V. C., & Hartmann, T. (2013). Neprilysin and Aβ clearance: Impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s disease. Frontiers in Aging Neuroscience, 5, 98. https://doi.org/10.3389/fnagi.2013.00098
  • Halder, D., Das, S., R S, J., & Joseph, A. (2022). Role of multi-targeted bioactive natural molecules and their derivatives in the treatment of Alzheimer’s disease: An insight into structure-activity relationship. Journal of Biomolecular Structure and Dynamics, 0(0), 1–38. https://doi.org/10.1080/07391102.2022.2158136
  • Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet. Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
  • Hickman, R. A., Faustin, A., & Wisniewski, T. (2016). Alzheimer disease and its growing epidemic. Neurologic Clinics, 34(4), 941–953. https://doi.org/10.1016/j.ncl.2016.06.009
  • Husna Ibrahim, N., Yahaya, M. F., Mohamed, W., Teoh, S. L., Hui, C. K., & Kumar, J. (2020). Pharmacotherapy of Alzheimer’s disease: Seeking clarity in a time of uncertainty. Frontiers in Pharmacology, 11, 261. https://doi.org/10.3389/fphar.2020.00261
  • Idda, M. L., Munk, R., Abdelmohsen, K., & Gorospe, M. (2018). Noncoding RNAs in Alzheimer’s disease. WIREs RNA, 9(2), 1-13. https://doi.org/10.1002/wrna.1463
  • Iqubal, A., Rahman, S. O., Ahmed, M., Bansal, P., Haider, M. R., Iqubal, M. K., Najmi, A. K., Pottoo, F. H., & Haque, S. E. (2021). Current quest in natural bioactive compounds for Alzheimer’s disease: Multi-targeted-designed-ligand based approach with preclinical and clinical based evidence. Current Drug Targets, 22(6), 685–720. https://doi.org/10.2174/1389450121999201209201004
  • Iranshahy, M., & Javadi, B. (2019). Diet therapy for the treatment of Alzheimer’s disease in view of traditional Persian medicine: A review. Iranian Journal of Basic Medical Sciences, 22(10), 1102–1117. https://doi.org/10.22038/ijbms.2019.36505.8694
  • Ishiura, S., & Yoshida, T. (2019). Plant-based vaccines for Alzheimer’s disease. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 95(6), 290–294. https://doi.org/10.2183/pjab.95.020
  • Jadhav, S. B., Shah, N., Rathi, A., Rathi, V., & Rathi, A. (2020). Serratiopeptidase: Insights into the therapeutic applications. Biotechnology Reports (Amsterdam, Netherlands), 28, e00544. https://doi.org/10.1016/j.btre.2020.e00544
  • Tripathi, K. D. (2013). Essentials of medical pharmacology. JAYPEE BROTHERS MEDICAL PUBLISHERS (P) LTD. (https://doi.org/10.1136/bmj.2.5260.1131
  • Khaw, K. Y., Chear, N. J. Y., Maran, S., Yeong, K. Y., Ong, Y. S., & Goh, B. H. (2020). Butyrylcholinesterase inhibitory activity and GC-MS analysis of carica papaya leaves. Natural Product Sciences, 26(2), 165–170. https://doi.org/10.20307/nps.2020.26.2.165
  • Kobayashi, N., Shinagawa, S., Nagata, T., Shimada, K., Shibata, N., Ohnuma, T., Kasanuki, K., Arai, H., Yamada, H., Nakayama, K., & Kondo, K. (2016). Development of biomarkers based on DNA methylation in the NCAPH2/LMF2 promoter region for diagnosis of Alzheimer’s disease and amnesic mild cognitive impairment. PloS One, 11(1), e0146449. https://doi.org/10.1371/journal.pone.0146449
  • Koelsch, G. (2017). BACE1 function and inhibition: Implications of intervention in the amyloid pathway of Alzheimer’s disease pathology. Molecules, 22(10), 1723. https://doi.org/10.3390/molecules22101723
  • Kosicek, M., & Hecimovic, S. (2013). Phospholipids and Alzheimer’s disease: Alterations, mechanisms and potential biomarkers. International Journal of Molecular Sciences, 14(1), 1310–1322. https://doi.org/10.3390/ijms14011310
  • Kumar Thakur, A., Kamboj, P., Goswami, K., & Ahuja, K. (2018). Pathophysiology and management of alzheimer’s disease: An overview. Journal of Analytical & Pharmaceutical Research, 7(2), 226–235. https://doi.org/10.15406/japlr.2018.07.00230
  • Kundzer, A. V., Volkova, M. V., Bogdanos, D. P., Rödiger, S., Schierack, P., Generalov, I., Nevinsky, G. A., & Roggenbuck, D. (2013). Deoxyribonuclease activity of polyclonal IgGs: A putative serological marker in patients with spondyloarthritides. Immunologic Research, 56(2–3), 457–464. https://doi.org/10.1007/s12026-013-8424-9
  • Lacorte, E., Ancidoni, A., Zaccaria, V., Remoli, G., Tariciotti, L., Bellomo, G., Sciancalepore, F., Corbo, M., Lombardo, F. L., Bacigalupo, I., Canevelli, M., Piscopo, P., & Vanacore, N. (2022). Safety and efficacy of monoclonal antibodies for Alzheimer’s disease: A systematic review and meta-analysis of published and unpublished clinical trials. Journal of Alzheimer’s Disease : JAD, 87(1), 101–129. https://doi.org/10.3233/JAD-220046
  • Ladenson, J. H. (2020). Diagnostics and therapeutics: The Yin and Yang of diseases such as Alzheimer. The Journal of Applied Laboratory Medicine, 5(1), 229–231. https://doi.org/10.1373/jalm.2019.029603
  • Lecanemab Approved for Treatment of Early Alzheimer’s Disease. (2023). https://www.alz.org/alzheimers-dementia/treatments/lecanemab-leqembi#:˜:text=Is%20lecanemab%20a%20cure%20for,people%20in%20the%20early%20stages
  • Lee, A. Y., Choi, J. M., Lee, J., Lee, M. H., Lee, S., & Cho, E. J. (2016). Effects of vegetable oils with different fatty acid compositions on cognition and memory ability in A β 25–35 -induced Alzheimer’s disease mouse model. Journal of Medicinal Food, 19(10), 912–921. https://doi.org/10.1089/jmf.2016.3737
  • Leri, M., Chaudhary, H., Iashchishyn, I. A., Pansieri, J., Svedružić, Ž. M., Gómez Alcalde, S., Musteikyte, G., Smirnovas, V., Stefani, M., Bucciantini, M., & Morozova-Roche, L. A. (2021). Natural compound from olive oil inhibits S100A9 amyloid formation and cytotoxicity: Implications for preventing Alzheimer’s disease. ACS Chemical Neuroscience, 12(11), 1905–1918. https://doi.org/10.1021/acschemneuro.0c00828
  • Lohner, S., Fekete, K., Marosvölgyi, T., & Decsi, T. (2013). Gender differences in the long-chain polyunsaturated fatty acid status: Systematic review of 51 publications. Annals of Nutrition & Metabolism, 62(2), 98–112. https://doi.org/10.1159/000345599
  • Ma, J., Ma, C., Li, J., Sun, Y., Ye, F., Liu, K., & Zhang, H. (2020). Extracellular matrix proteins involved in Alzheimer’s disease. Chemistry (Weinheim an der Bergstrasse, Germany), 26(53), 12101–12110. https://doi.org/10.1002/chem.202000782
  • Marr, R. A., & Hafez, D. M. (2014). Amyloid-beta and Alzheimerâ€TMs disease: The role of neprilysin-2 in amyloid-beta clearance. Frontiers in Aging Neuroscience, 6, 187. https://doi.org/10.3389/fnagi.2014.00187
  • Menden, A., Hall, D., Hahn-Townsend, C., Broedlow, C. A., Joshi, U., Pearson, A., Crawford, F., Evans, J. E., Klatt, N., Crynen, S., Mullan, M., & Ait-Ghezala, G. (2022). Exogenous lipase administration alters gut microbiota composition and ameliorates Alzheimer’s disease-like pathology in APP/PS1 mice. Scientific Reports, 12(1), 4797. https://doi.org/10.1038/s41598-022-08840-7
  • Michalea, R., Stathopoulou, K., Polychronopoulos, P., Benaki, D., Mikros, E., & Aligiannis, N. (2020). Efficient identification of acetylcholinesterase and hyaluronidase inhibitors from Paeonia parnassica extracts through a HeteroCovariance approach. Journal of Ethnopharmacology, 257, 111547. https://doi.org/10.1016/j.jep.2018.10.008
  • Min, L. J., Kobayashi, Y., Mogi, M., Tsukuda, K., Yamada, A., Yamauchi, K., Abe, F., Iwanami, J., Xiao, J. Z., & Horiuchi, M. (2017). Administration of bovine casein-derived peptide prevents cognitive decline in Alzheimer disease model mice. PloS One, 12(2), e0171515. https://doi.org/10.1371/JOURNAL.PONE.0171515
  • Mohamed, E. A., Ahmed, H. I., Zaky, H. S., & Badr, A. M. (2021). Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. Journal of Ethnopharmacology, 267, 113468. https://doi.org/10.1016/j.jep.2020.113468
  • Mohamed Yusof, N. I. S., Abdullah, Z. L., Othman, N., & Mohd Fauzi, F. (2022). Structure–activity relationship analysis of flavonoids and its inhibitory activity against BACE1 enzyme toward a better therapy for Alzheimer’s disease. Frontiers in Chemistry, 10, 874615. https://doi.org/10.3389/fchem.2022.874615
  • Muralidar, S., Ambi, S. V., Sekaran, S., Thirumalai, D., & Palaniappan, B. (2020). Role of tau protein in Alzheimer’s disease: The prime pathological player. International Journal of Biological Macromolecules, 163, 1599–1617. https://doi.org/10.1016/j.ijbiomac.2020.07.327
  • Nguyen, L. D., Chau, R. K., & Krichevsky, A. M. (2021). Small molecule drugs targeting non-coding RNAs as treatments for Alzheimer’s disease and related dementias. Genes, 12(12), 2005. https://doi.org/10.3390/genes12122005
  • Pal, D., & Raj, K. (2021). Biological activities of marine products and nutritional importance (pp. 587–616). Cham: Springer. https://doi.org/10.1007/978-3-030-54027-2_17
  • Panza, F., La Montagna, M., Lampignano, L., Zupo, R., Bortone, I., Castellana, F., Sardone, R., Borraccino, L., Dibello, V., Resta, E., Altamura, M., Daniele, A., & Lozupone, M. (2021). Vitamin D in the development and progression of Alzheimer’s disease: Implications for clinical management. Expert Review of Neurotherapeutics, 21(3), 287–301. https://doi.org/10.1080/14737175.2021.1873768
  • Prakashkumar, N., Sivamaruthi, B. S., Chaiyasut, C., & Suganthy, N. (2021). Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis: An in vitro study. Pharmaceutics, 13(3), 299. https://doi.org/10.3390/pharmaceutics13030299
  • Prins, N. D., & Scheltens, P. (2013). Treating Alzheimer’s disease with monoclonal antibodies: Current status and outlook for the future. Alzheimer’s Research & Therapy, 5(6), 56. https://doi.org/10.1186/alzrt220
  • Querobino, S. M., Carrettiero, D. C., Costa, M. S., & Alberto-Silva, C. (2017). Neuroprotective property of low molecular weight fraction from B. jararaca snake venom in H2O2 -induced cytotoxicity in cultured hippocampal cells. Toxicon : Official Journal of the International Society on Toxinology, 129, 134–143. https://doi.org/10.1016/j.toxicon.2017.02.015
  • Riscado, M., Baptista, B., & Sousa, F. (2021). New RNA-based breakthroughs in Alzheimer’s disease diagnosis and therapeutics. Pharmaceutics, 13(9), 1397. https://doi.org/10.3390/pharmaceutics13091397
  • Rybak-Wolf, A., & Plass, M. (2021). RNA dynamics in Alzheimer’s disease. Molecules, 26(17), 5113. https://doi.org/10.3390/molecules26175113
  • Rygiel, K. (2016). Novel strategies for Alzheimer’s disease treatment: An overview of anti-amyloid beta monoclonal antibodies. Indian Journal of Pharmacology, 48(6), 629. https://doi.org/10.4103/0253-7613.194867
  • Sancesario, G. M., Nuccetelli, M., Cerri, A., Zegeer, J., Severini, C., Ciotti, M. T., Pieri, M., Martorana, A., Caltagirone, C., Nistico, R., & Bernardini, S. (2018). Bromelain degrades Aβ1-42 monomers and soluble aggregates: An in vitro study in cerebrospinal fluid of Alzheimer’s disease patients. Current Alzheimer Research, 15(7), 628–636. https://doi.org/10.2174/1567205015666180123124851
  • Sánchez-Dengra, B., Bermejo, M., González-Álvarez, I., & González-Álvarez, M. (2022). Marine-based biopolymers for central nervous system drug delivery. In Marine biomaterials (pp. 317–349). Springer. https://doi.org/10.1007/978-981-16-4787-1_10
  • Sanchez, J. C., Zhang Zhang, L., Pufall, M., Musselman Biochemistry, C., Jung Yoon, H., Jun Kim, H., & Wu, S. (2019). Posters posters: Protein structure and conformation III 1638-Pos characterization of the novel DNA binding activity of the BRG1 at-hook-bromodomain 1639-Pos evaluation of thermal hysteresis activity of ice-binding protein using molecular dynamics simulati. Biophysical Journal, 116(3), 332a–333a. https://doi.org/10.1016/j.bpj.2018.11.1811
  • Schedin-Weiss, S., Winblad, B., & Tjernberg, L. O. (2014). The role of protein glycosylation in Alzheimer disease. The FEBS Journal, 281(1), 46–62. https://doi.org/10.1111/febs.12590
  • Seidler, P. M., Murray, K. A., Boyer, D. R., Ge, P., Sawaya, M. R., Hu, C. J., Cheng, X., Abskharon, R., Pan, H., DeTure, M. A., Williams, C. K., Dickson, D. W., Vinters, H. V., & Eisenberg, D. S. (2022). Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nature Communications, 13(1), 5451. https://doi.org/10.1038/s41467-022-32951-4
  • Shamarekh, K. S., Gad, H. A., Soliman, M. E., & Sammour, O. A. (2020). Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. Journal of Drug Delivery Science and Technology, 57, 101724. https://doi.org/10.1016/j.jddst.2020.101724
  • Silva, M. B. R., Falcão, H. G., Kurozawa, L. E., Prudencio, S. H., Camargo, A. C. d., Shahidi, F., & Ida, E. I. (2019). Ultrasound- and hemicellulase-assisted extraction increase β-glucosidase activity, the content of isoflavone aglycones and antioxidant potential of soymilk. Journal of Food Bioactives, 6, 140-147. https://doi.org/10.31665/JFB.2019.6191
  • Sundaram, S., Nagaraj, S., Mahoney, H., Portugues, A., Li, W., Millsaps, K., Faulkner, J., Yunus, A., Burns, C., Bloom, C., Said, M., Pinto, L., Azam, S., Flores, M., Henriksen, A., Gamsby, J., & Gulick, D. (2019). Inhibition of casein kinase 1δ/εimproves cognitive-affective behavior and reduces amyloid load in the APP-PS1 mouse model of Alzheimer’s disease. Scientific Reports, 9(1), 13743. https://doi.org/10.1038/s41598-019-50197-x
  • Taliyan, R., Kakoty, V., Sarathlal, K. C., Kharavtekar, S. S., Karennanavar, C. R., Choudhary, Y. K., Singhvi, G., Riadi, Y., Dubey, S. K., & Kesharwani, P. (2022). Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. Journal of Controlled Release : official Journal of the Controlled Release Society, 343, 528–550. https://doi.org/10.1016/j.jconrel.2022.01.044
  • Tetz, V., & Tetz, G. (2016). Effect of deoxyribonuclease I treatment for dementia in end-stage Alzheimer’s disease: A case report. Journal of Medical Case Reports, 10(1), 131. https://doi.org/10.1186/s13256-016-0931-6
  • Thangavelu, L., & Ramasamy, R. (2015). In vitro acetyl cholinesterase inhibitory assay of Acacia catechu Willd ethanolic seed extract. Pharmacognosy Journal, 7(5), 280–282. https://doi.org/10.5530/pj.2015.5.5
  • Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., & Nair, M. (2019). Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. International Journal of Nanomedicine, 14, 5541–5554. https://doi.org/10.2147/IJN.S200490
  • Usui, K., Yokota, S. I., Iwata, K., & Hamada, Y. (2020). Novel purification process for amyloid beta peptide(1-40). Processes, 8(4), 464. https://doi.org/10.3390/pr8040464
  • Vashishtha, S., & Kundu, B. (2022). Investigating the role of l-asparaginase as a potential therapeutic target against gonorrhea infections. Biophysical Journal, 121(3), 190a. https://doi.org/10.1016/j.bpj.2021.11.1787
  • Vieira, I., Camargo, L. T. F. M., Ribeiro, L., Rodrigues, A. C. C., & Camargo, A. J. (2019). Structure–activity relationship of tacrine and its analogues in relation to inhibitory activity against Alzheimer’s disease. Journal of Molecular Modeling, 25(5), 116. https://doi.org/10.1007/s00894-019-3993-8
  • Wang, W., Liu, M., Gao, W., Sun, Y., & Dong, X. (2021). Coassembled chitosan–hyaluronic acid nanoparticles as a theranostic agent targeting Alzheimer’s β-amyloid. ACS Applied Materials & Interfaces, 13(47), 55879–55889. https://doi.org/10.1021/acsami.1c17267
  • Wang, X., Liu, G., Gao, Q., Li, N., & Wang, R. (2020). C‐type lectin‐like receptor 2 and zonulin are associated with mild cognitive impairment and Alzheimer’s disease. Acta neurologica Scandinavica, 141(3), 250–255. https://doi.org/10.1111/ane.13196
  • Wei, X., Zhang, L., & Zeng, Y. (2020). DNA methylation in Alzheimer’s disease: In brain and peripheral blood. Mechanisms of Ageing and Development, 191, 111319. https://doi.org/10.1016/j.mad.2020.111319
  • Wong, M. W., Braidy, N., Poljak, A., Pickford, R., Thambisetty, M., & Sachdev, P. S. (2017). Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 13(7), 810–827. https://doi.org/10.1016/j.jalz.2017.01.008
  • Xue-Shan, Z., Juan, P., Qi, W., Zhong, R., Li-Hong, P., Zhi-Han, T., Zhi-Sheng, J., Gui-Xue, W., & Lu-Shan, L. (2016). Imbalanced cholesterol metabolism in Alzheimer’s disease. Clinica chimica acta; International Journal of Clinical Chemistry, 456, 107–114. https://doi.org/10.1016/j.cca.2016.02.024
  • Yan, L., Xie, Y., Satyanarayanan, S. K., Zeng, H., Liu, Q., Huang, M., Ma, Y., Wan, J.-B., Yao, X., Su, K.-P., & Su, H. (2020). Omega-3 polyunsaturated fatty acids promote brain-to-blood clearance of β-Amyloid in a mouse model with Alzheimer’s disease. Brain, Behavior, and Immunity, 85, 35–45. https://doi.org/10.1016/j.bbi.2019.05.033
  • Ye, M., Chung, H.-S., Lee, C., Yoon, M. S., Yu, A. R., Kim, J. S., Hwang, D.-S., Shim, I., & Bae, H. (2016). Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer’s disease. Journal of Neuroinflammation, 13(1), 10. https://doi.org/10.1186/s12974-016-0476-z
  • Zameer, S., Ali, J., Vohora, D., Najmi, A. K., & Akhtar, M. (2021). Development, optimisation and evaluation of chitosan nanoparticles of alendronate against Alzheimer’s disease in intracerebroventricular streptozotocin model for brain delivery. Journal of Drug Targeting, 29(2), 199–216. https://doi.org/10.1080/1061186X.2020.1817041
  • Zetterberg, H., & Bendlin, B. B. (2021). Biomarkers for Alzheimer’s disease—preparing for a new era of disease-modifying therapies. Molecular Psychiatry, 26(1), 296–308. https://doi.org/10.1038/s41380-020-0721-9
  • Zhang, M., & Bian, Z. (2021). The emerging role of circular RNAs in Alzheimer’s disease and Parkinson’s disease. Frontiers in Aging Neuroscience, 13, 691512. https://doi.org/10.3389/fnagi.2021.691512
  • Zhang, X., Zhao, X., Lang, Y., Li, Q., Liu, X., Cai, C., Hao, J., Li, G., & Yu, G. (2016). Low anticoagulant heparin oligosaccharides as inhibitors of BACE-1, the Alzheimer’s β-secretase. Carbohydrate Polymers, 151, 51–59. https://doi.org/10.1016/j.carbpol.2016.05.050
  • Zhang, Z., Wang, S., Tan, H., Yang, P., Li, Y., Xu, L., Duan, B., & Liu, Y. (2022). Advances in polysaccharides of natural source of the anti-Alzheimer’s disease effect and mechanism. Carbohydrate Polymers, 296, 119961. https://doi.org/10.1016/j.carbpol.2022.119961
  • Zhao, Y., Hu, D., Wang, R., Sun, X., Ropelewski, P., Hubler, Z., Lundberg, K., Wang, Q., Adams, D. J., Xu, R., & Qi, X. (2022). ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer’s disease models. Nature Communications, 13(1), 1121. https://doi.org/10.1038/s41467-022-28769-9
  • Zhu, H., Wang, X., Wallack, M., Li, H., Carreras, I., Dedeoglu, A., Hur, J.-Y., Zheng, H., Li, H., Fine, R., Mwamburi, M., Sun, X., Kowall, N., Stern, R. A., & Qiu, W. Q. (2015). Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer’s disease. Molecular Psychiatry, 20(2), 252–262. https://doi.org/10.1038/mp.2014.17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.