204
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Systematical analysis of underlying markers associated with Marfan syndrome via integrated bioinformatics and machine learning strategies

, , , , , , & show all
Pages 5713-5724 | Received 05 Jan 2023, Accepted 15 Jun 2023, Published online: 14 Jul 2023

References

  • Abu-Halima, M., Kahraman, M., Henn, D., Rädle-Hurst, T., Keller, A., Abdul-Khaliq, H., & Meese, E. (2018). Deregulated microRNA and mRNA expression profiles in the peripheral blood of patients with Marfan syndrome. Journal of Translational Medicine, 16(1), 60. https://doi.org/10.1186/s12967-018-1429-3
  • Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Research, 41(Database issue), D991–995. https://doi.org/10.1093/nar/gks1193
  • Bhasin, D., et al. (2021). Giant aortic root aneurysm in Marfan’s syndrome. J Invasive Cardiol, 33, E231–e232.
  • Blanchet, L., Vitale, R., van Vorstenbosch, R., Stavropoulos, G., Pender, J., Jonkers, D., Schooten, F.-J v., & Smolinska, A. (2020). Constructing bi-plots for random forest: Tutorial. Analytica Chimica Acta, 1131, 146–155. https://doi.org/10.1016/j.aca.2020.06.043
  • Blondelle, J., Tallapaka, K., Seto, J. T., Ghassemian, M., Clark, M., Laitila, J. M., Bournazos, A., Singer, J. D., & Lange, S. (2019). Cullin-3 dependent deregulation of ACTN1 represents a new pathogenic mechanism in nemaline myopathy. JCI Insight, 4(10), 5. https://doi.org/10.1172/jci.insight.125665
  • Boehm, C. D., & Kazazian, H. H. Jr. (1990). The molecular basis of genetic disease. Current Opinion in Biotechnology, 1(2), 180–187. https://doi.org/10.1016/0958-1669(90)90028-j
  • Cao, Y., Cao, W., Qiu, Y., Zhou, Y., Guo, Q., Gao, Y., & Lu, N. (2020). Oroxylin A suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis. Pharmacological Research, 159, 104981. https://doi.org/10.1016/j.phrs.2020.104981
  • Chen, Q., Zhou, X. W., Zhang, A. J., & He, K. (2021). ACTN1 supports tumor growth by inhibiting Hippo signaling in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research: CR, 40(1), 23. https://doi.org/10.1186/s13046-020-01821-6
  • Dean, J. C. (2007). Marfan syndrome: Clinical diagnosis and management. European Journal of Human Genetics: EJHG, 15(7), 724–733. https://doi.org/10.1038/sj.ejhg.5201851
  • Doncheva, N. T., Morris, J. H., Gorodkin, J., & Jensen, L. J. (2019). Cytoscape StringApp: Network analysis and visualization of proteomics data. Journal of Proteome Research, 18(2), 623–632. https://doi.org/10.1021/acs.jproteome.8b00702
  • Gautier, L., Cope, L., Bolstad, B. M., & Irizarry, R. A. (2004). affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics (Oxford, England), 20(3), 307–315. https://doi.org/10.1093/bioinformatics/btg405
  • Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 14, 7. https://doi.org/10.1186/1471-2105-14-7
  • Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C., Richter, J., Rubin, G. M., Blake, J. A., Bult, C., Dolan, M., Drabkin, H., Eppig, J. T., Hill, D. P., Ni, L., … White, R. (2004). The gene ontology (GO) database and informatics resource. Nucleic Acids Research, 32(Database issue), D258–261. https://doi.org/10.1093/nar/gkh036
  • Ioannou, G. N. (2021). Epidemiology and risk-stratification of NAFLD-associated HCC. Journal of Hepatology, 75(6), 1476–1484. https://doi.org/10.1016/j.jhep.2021.08.012
  • Ito, K., & Murphy, D. (2013). Application of ggplot2 to pharmacometric graphics. CPT: Pharmacometrics & Systems Pharmacology, 2(10), e79. https://doi.org/10.1038/psp.2013.56
  • Jiang, R., He, S., Sun, H., Gong, H., Yang, X., Cai, X., Wei, H., & Xiao, J. (2021). Identifying the risk factors and estimating the prognosis in patients with pelvis and spine Ewing sarcoma: A population-based study. Spine, 46(19), 1315–1325. https://doi.org/10.1097/brs.0000000000004022
  • Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms. Nucleic Acids Research, 49(D1), D545–d551. https://doi.org/10.1093/nar/gkaa970
  • Le Ribeuz, H., To, L., Ghigna, M.-R., Martin, C., Nagaraj, C., Dreano, E., Rucker-Martin, C., Girerd, B., Bouligand, J., Pechoux, C., Lambert, M., Boet, A., Issard, J., Mercier, O., Hoetzenecker, K., Manoury, B., Becq, F., Burgel, P.-R., Cottart, C.-H., … Antigny, F. (2021). Involvement of CFTR in the pathogenesis of pulmonary arterial hypertension. European Respiratory Journal, 58(5), 2000653. https://doi.org/10.1183/13993003.00653-2020
  • Li, F., Zhou, Y., Zhang, X., Tang, J., Yang, Q., Zhang, Y., Luo, Y., Hu, J., Xue, W., Qiu, Y., He, Q., Yang, B., & Zhu, F. (2020). SSizer: Determining the sample sufficiency for comparative biological study. Journal of Molecular Biology, 432(11), 3411–3421. https://doi.org/10.1016/j.jmb.2020.01.027
  • Li, Y., Zhang, J., Cheng, Z., Wang, Y., Huang, T., Lai, K., Du, X., Jiang, Z., & Yang, G. (2020). Adenovirus-mediated LAMA3 transduction enhances hemidesmosome formation and periodontal reattachment during wound healing. Molecular Therapy. Methods & Clinical Development, 18, 291–303. https://doi.org/10.1016/j.omtm.2020.06.001
  • Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The molecular signatures database (MSigDB) hallmark gene set collection. Cell Systems, 1(6), 417–425. https://doi.org/10.1016/j.cels.2015.12.004
  • Loher, P., & Rigoutsos, I. (2012). Interactive exploration of RNA22 microRNA target predictions. Bioinformatics (Oxford, England), 28(24), 3322–3323. https://doi.org/10.1093/bioinformatics/bts615
  • Ma, Q., Wang, L., Yang, Y., Su, Y., Wang, T., Hou, Q., Cai, R., Wang, Z., & Yao, H. (2020). Association between lncRNA and GCKR gene in type 2 diabetes mellitus. Clinica Chimica Acta; International Journal of Clinical Chemistry, 501, 66–71. https://doi.org/10.1016/j.cca.2019.10.004
  • Mao, B., Ma, J., Duan, S., Xia, Y., Tao, Y., & Zhang, L. (2021). Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. European Radiology, 31(7), 4576–4586. https://doi.org/10.1007/s00330-020-07562-6
  • Neptune, E. R., Frischmeyer, P. A., Arking, D. E., Myers, L., Bunton, T. E., Gayraud, B., Ramirez, F., Sakai, L. Y., & Dietz, H. C. (2003). Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nature Genetics, 33(3), 407–411. https://doi.org/10.1038/ng1116
  • Pesch, M., König, S., & Aumailley, M. (2017). Targeted disruption of the Lama3 gene in adult mice is sufficient to induce skin inflammation and fibrosis. The Journal of Investigative Dermatology, 137(2), 332–340. https://doi.org/10.1016/j.jid.2016.07.040
  • Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007
  • Robicsek, F. (2020). Should we move up the clock on preventive intervention in Marfan’s disease? The Thoracic and Cardiovascular Surgeon, 68(4), 328–329. https://doi.org/10.1055/s-0039-1678680
  • Sakai, L. Y., Keene, D. R., Renard, M., & De Backer, J. (2016). FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene, 591(1), 279–291. https://doi.org/10.1016/j.gene.2016.07.033
  • Sanz, H., Valim, C., Vegas, E., Oller, J. M., & Reverter, F. (2018). SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics, 19(1), 432. https://doi.org/10.1186/s12859-018-2451-4
  • Shen, W., Song, Z., Zhong, X., Huang, M., Shen, D., Gao, P., Qian, X., Wang, M., He, X., Wang, T., Li, S., & Song, X. (2022). Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 1(3), e36. https://doi.org/10.1002/imt2.36
  • Sticht, C., De La Torre, C., Parveen, A., & Gretz, N. (2018). miRWalk: An online resource for prediction of microRNA binding sites. PloS One, 13(10), e0206239. https://doi.org/10.1371/journal.pone.0206239
  • Stuart, A. G., & Williams, A. (2007). Marfan’s syndrome and the heart. Archives of Disease in Childhood, 92(4), 351–356. https://doi.org/10.1136/adc.2006.097469
  • Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–d612. https://doi.org/10.1093/nar/gkaa1074
  • Tang, L., Wang, P., Wang, Q., & Zhong, L. (2019). Correlation of LAMA3 with onset and prognosis of ovarian cancer. Oncology Letters, 18(3), 2813–2818. https://doi.org/10.3892/ol.2019.10600
  • Tin, A., Balakrishnan, P., Beaty, T. H., Boerwinkle, E., Hoogeveen, R. C., Young, J. H., & Kao, W. H. L. (2016). GCKR and PPP1R3B identified as genome-wide significant loci for plasma lactate: The Atherosclerosis Risk in Communities (ARIC) study. Diabetic Medicine: A Journal of the British Diabetic Association, 33(7), 968–975. https://doi.org/10.1111/dme.12971
  • Wang, R., Sun, L., Habulieti, X., Liu, J., Guo, K., Yang, X., Ma, D., & Zhang, X. (2022). Novel variants in LAMA3 and COL7A1 and recurrent variant in KRT5 underlying epidermolysis bullosa in five Chinese families. Frontiers of Medicine, 16(5), 808–814. https://doi.org/10.1007/s11684-021-0878-x
  • Wang, S. ‐K., Zhang, H., Wang, Y. ‐L., Seymen, F., Koruyucu, M., Simmer, J. P., & Hu, J C. ‐C. (2022). Phenotypic variability in LAMA3-associated amelogenesis imperfecta. Oral Diseases, 1–11. https://doi.org/10.1111/odi.14425
  • Xie, G.-F., Zhao, L.-D., Chen, Q., Tang, D.-X., Chen, Q.-Y., Lu, H.-F., Cai, J.-R., & Chen, Z. (2020). High ACTN1 is associated with poor prognosis, and ACTN1 silencing suppresses cell proliferation and metastasis in oral squamous cell carcinoma. Drug Design, Development and Therapy, 14, 1717–1727. https://doi.org/10.2147/dddt.S244516
  • Young, I. (1991). Understanding Marfan’s syndrome. BMJ (Clinical Research ed.), 303(6815), 1414–1415. https://doi.org/10.1136/bmj.303.6815.1414
  • Yuan, S. M., & Jing, H. (2010). Marfan’s syndrome: An overview. Sao Paulo Medical Journal = Revista Paulista de Medicina, 128(6), 360–366. https://doi.org/10.1590/s1516-31802010000600009
  • Zhao, L., Yuan, F., Pan, N., Yu, Y., Yang, H., Liu, Y., Wang, R., Zhang, B., & Wang, G. (2021). CFTR deficiency aggravates Ang II induced vasoconstriction and hypertension by regulating Ca2+ influx and RhoA/Rock pathway in VSMCs. Frontiers in Bioscience (Landmark Edition), 26(12), 1396–1410. https://doi.org/10.52586/5034
  • Zhou, Y., Wu, Q., Ni, G., Hong, Y., Xiao, S., Liu, C., & Yu, Z. (2022). Immune-associated pivotal biomarkers identification and competing endogenous RNA network construction in post-operative atrial fibrillation by comprehensive bioinformatics and machine learning strategies. Frontiers in Immunology, 13, 974935. https://doi.org/10.3389/fimmu.2022.974935

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.