89
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural dynamics of clinically-reported VUS in the BARD1 ARD-BRCT region to predict the molecular basis of alterations

, , , &
Pages 5475-5484 | Received 20 Apr 2023, Accepted 11 Jun 2023, Published online: 07 Jul 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). ‘Predicting functional effect of human missense mutations using PolyPhen-2’. Current Protocols in Human Genetics, 76(1), 7.20.1-7.20.41. https://doi.org/10.1002/0471142905.hg0720s76
  • Alenezi, W. M., Fierheller, C. T., Recio, N., & Tonin, P. N. (2020). Literature review of BARD1 as a cancer predisposing gene with a focus on breast and ovarian cancers. Genes, 11(8), 856. https://doi.org/10.3390/genes11080856
  • Angeli, D., Salvi, S., & Tedaldi, G. (2020). Genetic predisposition to breast and ovarian cancers: How many and which genes to test? International Journal of Molecular Sciences, 21(3), 1128–1155. https://doi.org/10.3390/ijms21031128
  • Arslan Ates, E., Turkyilmaz, A., Alavanda, C., Yildirim, O., & Guney, A. I. (2022). Multigene panel testing in Turkish hereditary cancer syndrome patients. Medeniyet Medical Journal, 37(2), 150–158. https://doi.org/10.4274/MMJ.galenos.2022.22556
  • Barua, S. A., Goswami, N., Mishra, N., Sawant, U. U., & Varma, A. K. (2022). In silico and structure-based assessment of similar variants discovered in tandem repeats of BRCT domains of BRCA1 and BARD1 to characterize the folding pattern. ACS Omega, 7(49), 44772–44785. https://doi.org/10.1021/acsomega.2c04782
  • Beggs, A. D., & Hodgson, S. V. (2009). Genomics and breast cancer: The different levels of inherited susceptibility. European Journal of Human Genetics : EJHG, 17(7), 855–856. https://doi.org/10.1038/ejhg.2008.235
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Birrane, G., Varma, A. K., Soni, A., & Ladias, J. A. A. (2007). Crystal structure of the BARD1 BRCT domains. Biochemistry, 46(26), 7706–7712. https://doi.org/10.1021/bi700323t
  • De Brakeleer, S., De Grève, J., Loris, R., Janin, N., Lissens, W., Sermijn, E., & Teugels, E. (2010). Cancer predisposing missense and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast cancer families. Human Mutation, 31(3), E1175–E1185. https://doi.org/10.1002/humu.21200
  • Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta crystallographica. Section D, Biological Crystallography, 66(Pt 1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Choudhary, R. K., Siddiqui, M. Q., Thapa, P. S., Gadewal, N., Nachimuthu, S. K., & Varma, A. K. (2017). Structural basis to stabilize the domain motion of BARD1-ARD BRCT by CstF50. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-03816-4
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hu, Q., Botuyan, M. V., Zhao, D., Cui, G., Mer, E., & Mer, G. (2021). Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation. Nature, 596(7872), 438–443. https://doi.org/10.1038/s41586-021-03716-8
  • Irminger-Finger, I., Leung, W. C., Li, J., Dubois-Dauphin, M., Harb, J., Feki, A., Jefford, C. E., Soriano, J. V., Jaconi, M., Montesano, R., & Krause, K. H. (2001). Identification of BARD1 as mediator between proapoptotic stress and p53-dependent apoptosis. Molecular Cell, 8(6), 1255–1266. https://doi.org/10.1016/S1097-2765(01)00406-3
  • Ishitobi, M., Miyoshi, Y., Hasegawa, S., Egawa, C., Tamaki, Y., Monden, M., & Noguchi, S. (2003). Mutational analysis of BARD1 in familial breast cancer patients in Japan. Cancer Letters, 200(1), 1–7. https://doi.org/10.1016/S0304-3835(03)00387-2
  • Janert, P. K. (2016). Gnuplot in action : Understanding data with graphs (2nd ed.). Manning Publications Co.
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Karppinen, S. M. (2004). Mutation screening of the BARD1 gene: Evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer. Journal of Medical Genetics, 41(9), e114. https://doi.org/10.1136/jmg.2004.020669
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32(Web Server), W526–W531. https://doi.org/10.1093/nar/gkh468
  • Kleiman, F. E., & Manley, J. L. (2001). The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell, 104(5), 743–753. https://doi.org/10.1016/S0092-8674(01)00270-7
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. https://doi.org/10.1007/s008940100045
  • López-Ferrando, V., Gazzo, A., de la Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Research, 45(W1), W222–W228. https://doi.org/10.1093/nar/gkx313
  • Mathe, E., Olivier, M., Kato, S., Ishioka, C., Hainaut, P., & Tavtigian, S. V. (2006). Computational approaches for predicting the biological effect of p53 missense mutations : A comparison of three sequence analysis based methods. Nucleic Acids Research, 34(5), 1317–1325. https://doi.org/10.1093/nar/gkj518
  • Melchor, L., & Benítez, J. (2013). The complex genetic landscape of familial breast cancer. Human Genetics, 132(8), 845–863. https://doi.org/10.1007/s00439-013-1299-y
  • Niroula, A., Urolagin, S., & Vihinen, M. (2015). PON-P2: Prediction method for fast and reliable identification of harmful variants. Plos One, 10(2), e0117380. https://doi.org/10.1371/journal.pone.0117380
  • Páll, S., Abraham, M. J., Kutzner, C., Hess, B., & Lindahl, E. (2015). Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In E. Markidis & S. Laure (Eds.), Solving software challenges for exascale (Vol. 8759., pp. 3–27). Springer. https://doi.org/10.1007/978-3-319-15976-8_1
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H.-J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 1–13. https://doi.org/10.1038/s41467-020-19669-x
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Prakash, R., Zhang, Y., Feng, W., & Jasin, M. (2015). Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harbor Perspectives in Biology, 7(4), a016600. https://doi.org/10.1101/cshperspect.a016600
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Reva, B., Antipin, Y., & Sander, C. (2007). Determinants of protein function revealed by combinatorial entropy optimization. Genome Biology, 8(11), R232. https://doi.org/10.1186/gb-2007-8-11-r232
  • Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Research, 39(17), e118–e118. https://doi.org/10.1093/nar/gkr407
  • Schon, K., & Tischkowitz, M. (2018). Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Research and Treatment, 167(2), 417–423. https://doi.org/10.1007/s10549-017-4531-y
  • Sniadecki, M., et al. (2020). BARD1 and breast cancer: The possibility of creating screening tests and new preventive and therapeutic pathways for predisposed Women. Genes (Basel), 11(11), 1251. https://doi.org/10.3390/genes11111251
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Suszynska, M., Ratajska, M., Galka-Marciniak, P., Ryszkowska, A., Wydra, D., Debniak, J., Jasiak, A., Wasag, B., Cybulski, C., & Kozlowski, P. (2022). Variant identification in BARD1, PRDM9, RCC1, and RECQL in patients with ovarian cancer by targeted next-generation sequencing of DNA pools. Cancer Prevention Research (Philadelphia, Pa.), 15(3), 151–160. https://doi.org/10.1158/1940-6207.CAPR-21-0295
  • Tang, H., & Thomas, P. D. (2016). PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics (Oxford, England), 32(14), 2230–2232. https://doi.org/10.1093/bioinformatics/btw222
  • Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., Bindal, N., Boutselakis, H., Cole, C. G., Creatore, C., Dawson, E., Fish, P., Harsha, B., Hathaway, C., Jupe, S. C., Kok, C. Y., Noble, K., Ponting, L., Ramshaw, C. C., Rye, C. E., … Forbes, S. A. (2019). COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Research, 47(D1), D941–D947. https://doi.org/10.1093/nar/gky1015
  • Thai, T. H., Du, F., Tsan, J. T., Jin, Y., Phung, A., Spillman, M. A., Massa, H. F., Muller, C. Y., Ashfaq, R., Mathis, J. M., Miller, D. S., Trask, B. J., Baer, R., & Bowcock, A. M. (1998). Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Human Molecular Genetics, 7(2), 195–202. https://doi.org/10.1093/hmg/7.2.195

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.